Search

found 4 results

Research papers, The University of Auckland Library

The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.

Research papers, University of Canterbury Library

This study followed two similarly affected, but socio-economically disparate suburbs as residents responded to and attempted to recover from the devastating 6.3 magnitude earthquake that struck Christchurch, New Zealand, on February 22, 2011. More specifically, it focuses on the role of local churches, community-based organisations (CBOs) and non-governmental organisations (NGOs), here referred to broadly as civil society, in meeting the immediate needs of local residents and assisting with the longer-term recovery of each neighbourhood. Despite considerable socioeconomic differences between the two neighbourhoods, civil society in both suburbs has been vital in addressing the needs of locals in the short and long term following the earthquake. Institutions were able to utilise local knowledge of both residents and the extent of damage in the area to a) provide a swifter local response than government or civil defence and then help direct the relief these agencies provided locally; b) set up central points for distribution of supplies and information where locals would naturally gather; c) take action on what were perceived to be unmet needs; and d) act as a way of bridging locals to a variety of material, informational, and emotional resources. However the findings also support literature which indicates that other factors are also important in understanding neighbourhood recovery and the role of civil society, including: local leadership; a shared, place-based identity; the type and form of civil society organizations; social capital; and neighbourhood- and household-level indicators of relative vulnerability and inequality. The intertwining of these various factors seems to influence how these neighbourhoods have coped with and taken steps in recovering from this disaster. It is recommended that future research be directed at developing a better understanding of how this occurs. It is suggested that a model similar to Yasui’s (2007) Community Vulnerability and Capacity model be developed as a useful way to approach future research in this area.

Research papers, University of Canterbury Library

During 2010 and 2011, a series of major earthquakes caused widespread damage in the city of Christchurch, New Zealand. The magnitude 6.3 quake in February 2011 caused 185 fatalities. In the ensuing months, the government progressively zoned residential land in Christchurch on the basis of its suitability for future occupation (considering damage from these quakes and future earthquake risk). Over 6,000 homes were placed in the ‘red-zone’, meaning that property owners were forced to sell their land to the Crown. This study analysed patterns of residential mobility amongst thirty-one red-zone households from the suburb of Southshore, Christchurch. Drawing on interviews and surveys, the research traced their experience from the zoning announcement until they had moved to a new residence. The research distinguished between short (before the zoning announcement) and long term (post the red zone ‘deadline’) forms of household relocation. The majority of households in the study were highly resistant to short term movement. Amongst those which did relocate before the zoning decision, the desire to maintain a valued social connection with a person outside of the earthquake environment was often an important factor. Some households also moved out of perceived necessity (e.g. due to lack of power or water). In terms of long-term relocation, concepts of affordability and safety were much more highly valued by the sample when purchasing post-quake property. This resulted in a distinct patterning of post-quake housing location choices. Perceived control over the moving process, relationship with government organisations and insurance companies, and time spent in the red-zone before moving all heavily influenced participants’ disaster experience. Contrary to previous studies, households in this study recorded higher levels of subjective well-being after relocating. The study proposed a typology of movers in the Christchurch post-disaster environment. Four mobility behaviours, or types, are identified: the Committed Stayers (CSs), the Environment Re-Creators (ERCs), the Resigned Acceptors (RAs), and the Opportunistic Movers (OMs). The CSs were defined by their immobility rather than their relocation aspirations, whilst the ERCs attempted to recreate or retain aspects of Southshore through their mobility. The RAs expressed a form of apathy towards the post-quake environment, whereas, on the other hand, the OMs moved relative to pre-earthquake plans, or opportunities that arose from the earthquake itself. Possibilities for further research include examining household adaptability to new residential environments and tracking further mobility patterns in the years following relocation from the red- zone.

Research papers, University of Canterbury Library

Geosynthetic reinforced soil (GRS) walls involve the use of geosynthetic reinforcement (polymer material) within the retained backfill, forming a reinforced soil block where transmission of overturning and sliding forces on the wall to the backfill occurs. Key advantages of GRS systems include the reduced need for large foundations, cost reduction (up to 50%), lower environmental costs, faster construction and significantly improved seismic performance as observed in previous earthquakes. Design methods in New Zealand have not been well established and as a result, GRS structures do not have a uniform level of seismic and static resistance; hence involve different risks of failure. Further research is required to better understand the seismic behaviour of GRS structures to advance design practices. The experimental study of this research involved a series of twelve 1-g shake table tests on reduced-scale (1:5) GRS wall models using the University of Canterbury shake-table. The seismic excitation of the models was unidirectional sinusoidal input motion with a predominant frequency of 5Hz and 10s duration. Seismic excitation of the model commenced at an acceleration amplitude level of 0.1g and was incrementally increased by 0.1g in subsequent excitation levels up to failure (excessive displacement of the wall panel). The wall models were 900mm high with a full-height rigid facing panel and five layers of Microgird reinforcement (reinforcement spacing of 150mm). The wall panel toe was founded on a rigid foundation and was free to slide. The backfill deposit was constructed from dry Albany sand to a backfill relative density, Dr = 85% or 50% through model vibration. The influence of GRS wall parameters such as reinforcement length and layout, backfill density and application of a 3kPa surcharge on the backfill surface was investigated in the testing sequence. Through extensive instrumentation of the wall models, the wall facing displacements, backfill accelerations, earth pressures and reinforcement loads were recorded at the varying levels of model excitation. Additionally, backfill deformation was also measured through high-speed imaging and Geotechnical Particle Image Velocimetry (GeoPIV) analysis. The GeoPIV analysis enabled the identification of the evolution of shear strains and volumetric strains within the backfill at low strain levels before failure of the wall thus allowing interpretations to be made regarding the strain development and shear band progression within the retained backfill. Rotation about the wall toe was the predominant failure mechanism in all excitation level with sliding only significant in the last two excitation levels, resulting in a bi-linear displacement acceleration curve. An increase in acceleration amplification with increasing excitation was observed with amplification factors of up to 1.5 recorded. Maximum seismic and static horizontal earth pressures were recorded at failure and were recorded at the wall toe. The highest reinforcement load was recorded at the lowest (deepest in the backfill) reinforcement layer with a decrease in peak load observed at failure, possibly due to pullout failure of the reinforcement layer. Conversely, peak reinforcement load was recorded at failure for the top reinforcement layer. The staggered reinforcement models exhibited greater wall stability than the uniform reinforcement models of L/H=0.75. However, similar critical accelerations were determined for the two wall models due to the coarseness of excitation level increments of 0.1g. The extended top reinforcements were found to restrict the rotational component of displacement and prevented the development of a preliminary shear band at the middle reinforcement layer, contributing positively to wall stability. Lower acceleration amplification factors were determined for the longer uniform reinforcement length models due to reduced model deformation. A greater distribution of reinforcement load towards the top two extended reinforcement layers was also observed in the staggered wall models. An increase in model backfill density was observed to result in greater wall stability than an increase in uniform reinforcement length. Greater acceleration amplification was observed in looser backfill models due to their lower model stiffness. Due to greater confinement of the reinforcement layers, greater reinforcement loads were developed in higher density wall models with less wall movement required to engage the reinforcement layers and mobilise their resistance. The application of surcharge on the backfill was observed to initially increase the wall stability due to greater normal stresses within the backfill but at greater excitation levels, the surcharge contribution to wall destabilising inertial forces outweighs its contribution to wall stability. As a result, no clear influence of surcharge on the critical acceleration of the wall models was observed. Lower acceleration amplification factors were observed for the surcharged models as the surcharge acts as a damper during excitation. The application of the surcharge also increases the magnitude of reinforcement load developed due to greater confinement and increased wall destabilising forces. The rotation of the wall panel resulted in the progressive development of shears surface with depth that extended from the backfill surface to the ends of the reinforcement (edge of the reinforced soil block). The resultant failure plane would have extended from the backfill surface to the lowest reinforcement layer before developing at the toe of the wall, forming a two-wedge failure mechanism. This is confirmed by development of failure planes at the lowest reinforcement layer (deepest with the backfill) and at the wall toe observed at the critical acceleration level. Key observations of the effect of different wall parameters from the GeoPIV results are found to be in good agreement with conclusions developed from the other forms of instrumentation. Further research is required to achieve the goal of developing seismic guidelines for GRS walls in geotechnical structures in New Zealand. This includes developing and testing wall models with a different facing type (segmental or wrap-around facing), load cell instrumentation of all reinforcement layers, dynamic loading on the wall panel and the use of local soils as the backfill material. Lastly, the limitations of the experimental procedure and wall models should be understood.