This thesis focuses attention on the ongoing effects of the earthquakes on children in Christchurch. It identifies the learning and behavioural difficulties evident in an increasing number of students and cautions the use of the word 'resilient' to describe children who may be just managing. This assumption has a significant impact on the wellbeing of many Christchurch children who, disaster literature warns, are likely to be under-served. This thesis suggests that, because of the scale of need, schools are the best place to introduce practices that will foster wellbeing. Mindfulness practices are identified as a potential tool for ameliorating the vulnerabilities experienced by children, while at the same time working to increase their capabilities. This thesis argues that, through mindful practices, children can learn to be more reflective of their emotions and respond in more considered ways to different situations. They can become more relational, having a greater understanding of others through a deeper understanding of themselves, and they can build resilience by developing the protective factors that promote more adaptive functioning. This thesis identifies the strong links between mindfulness and the holistic wellbeing concept of Te Whare Tapa Whã and a Mãori worldview. Strong links are also identified with the vision, values and key competencies of the New Zealand Curriculum and 21st Century learners. Both short and long term recommendations are made for the introduction of mindfulness practices in schools to enhance the wellbeing of children.
This thesis examines how 18 University of Canterbury students based in Christchurch experienced housing insecurity during the three years after a series of major earthquakes from late 2010 and throughout 2011. I adopted a qualitative exploratory approach to gather students’ accounts and examine their experiences which were analysed using constructivist grounded theory methods. Three core categories were identified from the data: mobility, recreating security, and loss. Mobility included the effects of relocation and dislocation, as well as how the students searched for stability. Recreating security required a renewed sense of belonging and also addressed the need to feel physically safe. Lastly, loss included the loss of material possessions and also the loss of voice and political representation. The theory that emerged from these findings is that the extent to which students were able to control their mobility largely explained their experiences of housing insecurity. When students experienced a loss of control over their mobility they effectively addressed this by being resourceful and drawing on existing forms of capital. This resourcefulness generated a new form of capital, here called security capital, which represents a conceptual contribution to existing debates on students’ experiences of homelessness in a disaster context.
Christchurch has experienced a series of over 13,500 earthquakes between September 2010 and January 2012. Some children who have been exposed to earthquakes may experience post-traumatic stress disorder symptoms (PTSD) including difficulty concentrating, feeling anxious, restlessness and confusion. Other children may be resilient to the effects of disaster. Western models of resilience relate to a child’s social support and their capacity to cope. The Māori model of wellbeing relates to whanau (family), wairua (spiritual connections), tinana (the physical body) and hinengaro (the mind and emotions). Children’s concepts of helping, caring and learning may provide insight into resilience without introducing the topic of earthquakes into the conversation, which in itself may provoke an episode of stress. Many researchers have studied the effects of earthquakes on children. However, few studies have examined positive outcomes and resilience or listened to the children’s voices. The objective of this study was to listen to the voices of children who experienced the Canterbury earthquake period in order to gain a deeper understanding of the ideas associated resilience. Individual interviews were conducted with 17 five-year-old participants during their first term of primary school. After the interviews, the teacher shared demographic information and reports on the children’s stress and coping. Six children were identified as New Zealand European and eleven children identified as New Zealand Māori. Children had different views of helping, caring and learning. Themes of resilience from Western and Kaupapa Māori models were identified in transcripts of the children's voices and drawings. Māori children voiced more themes of resilience associated with the Western model, and in the Tapa Whā model, Māori children's transcripts were more likely to be inclusive of all four components of well-being. How five-year-old children, having experienced an earthquake disaster during their preschool years, talk or draw pictures about helping, caring and learning can provide insight into resilience, especially in situations where it is not advisable to re-traumatise children by discussing the disaster event. Future research should interview parents/caregivers and whānau to gain further insights. Considering information from both a Western and a Tapa Whā perspective can also provide new insights into resilience in young children. A limitation of this study is that qualitative studies are not always free from a researcher’s interpretation and are, therefore, subjective.
Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.
Tertiary students, not just working populations, might be experiencing feelings of burnout following the Christchurch earthquakes of 2010 and 2011. In the aftermath of a major disaster, the gap between the resources available to handle pressures (e.g., support) and the demands inherent in the pursuit of an academic degree (e.g., heavy workload) may lead to feelings of burnout among students. This study hypothesised that burnout dimensions (emotional exhaustion and disengagement) would be related to students’ perceptions of immediate institutional support, extended institutional support, peer support, family support, and work overload. Additionally, it was proposed that institutional and social support would moderate the relationship between work overload and burnout. Two hundred and seventy one third and fourth year students were sampled using an online questionnaire. These particular students were expected to be at greater risk of emotional exhaustion and academic disengagement because they were at the earliest stage of their tertiary education when the major earthquakes first hit. Family support and extended institutional support were found to be associated with decreased levels of emotional exhaustion and disengagement. Meanwhile, work overload was found to be related to increased levels of emotional exhaustion and disengagement. Furthermore, both peer support and immediate institutional support were found to have a moderating effect on the relationship between work overload and disengagement. This study has exposed unique findings which contribute to burnout research especially in a post-disaster context, and raises the importance of providing the right types of support for individuals who are particularly dealing with the consequences of a natural disaster.
During the 2010/2011 Canterbury earthquakes, Reinforced Concrete Frame with Masonry Infill (RCFMI) buildings were subjected to significant lateral loads. A survey conducted by Christchurch City Council (CCC) and the Canterbury Earthquake Recovery Authority (CERA) documented 10,777 damaged buildings, which included building characteristics (building address, the number of storeys, the year of construction, and building use) and post-earthquake damage observations (building safety information, observed damage, level of damage, and current state of the buildings). This data was merged into the Canterbury Earthquake Building Assessment (CEBA) database and was utilised to generate empirical fragility curves using the lognormal distribution method. The proposed fragility curves were expected to provide a reliable estimation of the mean vulnerability for commercial RCFMI buildings in the region. http://www.13thcms.com/wp-content/uploads/2017/05/Symposium-Info-and-Presentation-Schedule.pdf VoR - Version of Record
After 160 years of colonial settlement, Christchurch has recently experienced a sequence of devastating earthquakes and seen the need for a widespread de- and re-construction of the central city, as well as, many of the surrounding neighbourhoods and peri-urban satellite settlements. This paper will offer a view of the opportunities and restrictions to the post-earthquake re-development of Christchurch as informed by ‘growth machine’ theory. A case study investigating an illegal dump in central Christchurch will be used to assess the applicability of growth machine theory to the current disaster response.
This thesis considers the presence and potential readings of graffiti and street art as part of the wider creative public landscape of Christchurch in the wake of the series of earthquakes that significantly disrupted the city physically and socially. While documenting a specific and unprecedented period of time in the city’s history, the prominence of graffiti and street art throughout the constantly changing landscape has also highlighted their popularity as increasingly entrenched additions to urban and suburban settings across the globe. In post-quake Christchurch, graffiti and street art have often displayed established tactics, techniques and styles while exploring and exposing the unique issues confronting this disrupted environment, illustrating both a transposable nature and the entwined relationship with the surrounding landscape evident in the conception of these art forms. The post-quake city has afforded graffiti and street art the opportunity to engage with a range of concepts: from the re-activation and re-population of the empty and abandoned spaces of the city, to commentaries on specific social and political issues, both angry and humorous, and notably the reconsideration of entrenched and evolving traditions, including the distinction between guerrilla and sanctioned work. The examples of graffiti and street art within this work range from the more immediate post-quake appearance of art in a group of affected suburbs, including the increasingly empty residential red-zone, to the use of the undefined spaces sweeping the central city, and even inside the Canterbury Museum, which housed the significant street art exhibition Rise in 2013-2014. These settings expose a number of themes, both distinctive and shared, that relate to both the post-disaster landscape and the concerns of graffiti and street art as art movements unavoidably entangled with public space.
An extensive research program is on-going at the University of Canterbury, New Zealand to develop new technologies to permit the construction of multi-storey timber buildings in earthquake prone areas. The system combines engineered timber beams, columns and walls with ductile moment resisting connections using post-tensioned tendons and eventually energy dissipaters. The extensive experimental testing on post-tensioned timber building systems has proved a remarkable lateral response of the proposed solutions. A wide number of post-tensioned timber subassemblies, including beam-column connections, single or coupled walls and column-foundation connections, have been analysed in static or quasi-static tests. This contribution presents the results of the first dynamic tests carried out with a shake-table. Model frame buildings (3-storey and 5-storey) on one-quarter scale were tested on the shake-table to quantify the response of post-tensioned timber frames during real-time earthquake loading. Equivalent viscous damping values were computed for post-tensioned timber frames in order to properly predict their response using numerical models. The dynamic tests were then complemented with quasi-static push and pull tests performed to a 3-storey post-tensioned timber frame. Numerical models were included to compare empirical estimations versus dynamic and quasi-static experimental results. Different techniques to model the dynamic behaviour of post-tensioned timber frames were explored. A sensitivity analysis of alternative damping models and an examination of the influence of designer choices for the post-tensioning force and utilization of column armouring were made. The design procedure for post-tensioned timber frames was summarized and it was applied to two examples. Inter-storey drift, base shear and overturning moments were compared between numerical modelling and predicted/targeted design values.
Fatal earthquakes such as that which occurred in Christchurch on February 22nd 2011, can result in survivors having difficulties with cognitively processing the event, which may be the precursor to posttraumatic stress symptoms. Trauma related dissociation has been proposed to be a mechanism related to these cognitive processing difficulties. Most research focusing on information processing and dissociation post-trauma has conducted controlled analogue studies or has not focused solely on information processing and dissociation. There is also scant research on these constructs across therapy. In response to this gap in research, two studies were developed. An association was proposed between dissociation and information processing as demonstrated by an increase in conceptual processing and a reduction in dissociation. It was predicted that an improvement in these constructs would be related to a reduction in PTSD symptoms over therapy. Study1 applied a case-study design to 5 individuals who were attending therapy for post-traumatic stress disorder in response to the trauma they had experienced from the Christchurch earthquakes. Study 2 assessed information processing and dissociation (via self and observer report) in 20 individuals who had direct exposure to the effects of the earthquake. Earthquake information processing and dissociation were assessed as they were happening nearly two year’s post-quake using correlation analyses and hierarchical regressions. The hypotheses were partially confirmed, in that an increase in conceptual processing was not shown to be associated with a reduction in dissociation. However, an increase in conceptual processing was shown to be related to trauma symptom improvement particularly for re-experiencing symptoms. In addition, study 2 demonstrated a possible relationship between trait dissociation and arousal symptoms. These findings partially support the proposed role information processing and dissociation play in the recovery from PTSD. The findings suggest that trauma related difficulties should be assessed as early as possible to resolve issues related to a delay in symptom reporting.
Reinforced concrete (RC) frame buildings designed according to modern design standards achieved life-safety objectives during the Canterbury earthquakes in 2010-11 and the Kaikōura earthquake in 2016. These buildings formed ductile plastic hinges as intended and partial or total building collapse was prevented. However, despite the fact that the damage level of these buildings was relatively low to moderate, over 60% of multi-storey RC buildings in the Christchurch central business district were demolished due to insufficient insurance coverage and significant uncertainty in the residual capacity and repairability of those buildings. This observation emphasized an imperative need to improve understanding in evaluating the post-earthquake performance of earthquake-damaged buildings and to develop relevant post-earthquake assessment guidelines. This thesis focuses on improving the understanding of the residual capacity and repairability of RC frame buildings. A large-scale five-storey RC moment-resisting frame building was tested to investigate the behaviour of earthquake-damaged and repaired buildings. The original test building was tested with four ground motions, including two repeated design-level ground motions. Subsequently, the test building was repaired using epoxy injection and mortar patching and re-tested with three ground motions. The test building was assessed using key concepts of the ATC-145 post-earthquake assessment guideline to validate its assessment procedures and highlight potential limitations. Numerical models were developed to simulate the peak storey drift demand and identify damage locations. Additionally, fatigue assessment of steel reinforcement was conducted using methodologies as per ATC-145. The residual capacity of earthquake-strained steel reinforcement was experimentally investigated in terms of the residual fatigue capacity and the residual ultimate strain capacity. In addition to studying the fatigue capacity of steel reinforcement, the fatigue damage demand was estimated using 972 ground motion records. The deformation limit of RC beams and columns for damage control was explored to achieve a low likelihood of requiring performance-critical repair. A frame component test database was developed, and the deformation capacity at the initiation of lateral strength loss was examined in terms of the chord rotation, plastic rotation and curvature ductility capacity. Furthermore, the proposed curvature ductility capacity was discussed with the current design curvature ductility limits as per NZS 3101:2006.
The collapse of Redcliffs’ cliff in the 22 February 2011 and 13 June 2011 earthquakes were the first times ever a major failure incident occurred at Redcliffs in approximately 6000 years. This master’s thesis is a multidisciplinary engineering geological investigation sought to study these particular failure incidents, focusing on collecting the data necessary to explain the cause and effect of the cliff collapsing in the event of two major earthquakes. This study provides quantitative and qualitative data about the geotechnical attributes and engineering geological nature of the sea-cut cliff located at Redcliffs. Results from surveying the geology of Redcliffs show that the exposed lithology of the cliff face is a variably jointed rock body of welded and (relatively intact) unwelded ignimbrite, a predominantly massive unit of brecciated tuff, and a covering of wind-blown loess and soil deposit (commonly found throughout Canterbury) on top of the cliff. Moreover, detailing the external component of the slope profile shows that Redcliffs’ cliff is a 40 – 80 m cliff with two intersecting (NE and SE facing) slope aspects. The (remotely) measured geometry of the cliff face comprises of multiple outstanding gradients, averaging a slope angle of ~67 degrees (post-13 June 2011), where the steepest components are ~80 degrees, whereas the gentle sloping sections are ~44 degrees. The physical structure of Redcliffs’ cliff drastically changed after each collapse, whereby seismically induced alterations to the slope geometry resulted in material deposited on the talus at the base of the cliff. Prior to the first collapse, the variance of the gradient down the slope was minimal, with the SE Face being the most variable with up to three major gradients on one cross section. However, after each major collapse, the variability increased with more parts of the cliff face having more than one major gradient that is steeper or gentler than the remainder of the slope. The estimated volume of material lost as a result of the gradient changes was 28,267 m³ in February and 11,360 m³ in June 2011. In addition, surveys of the cliff top after the failure incidents revealed the development of fissures along the cliff edge. Monitoring 10 fissures over three months indicated that fissured by the cliff edge respond to intense seismicity (generally ≥ Mw 4) by widening. Redcliffs’ cliff collapsed on two separate occasions as a result of an accumulated amount of damage of the rock masses in the cliff (caused by weathering and erosion over time), and two Mw 6.2 trigger earthquakes which shook the Redcliffs and the surrounding area at a Peak Ground Acceleration (PGA) estimated to be around 2 g. The results of the theoretical study suggests that PGA levels felt on-site during both instances of failure are the result of three major factors: source of the quake and the site affected; topographic amplification of the ground movement; the short distance between the source and the cliff for both fault ruptures; the focus of seismic energy in the direction of thrust faulting along a path that intercepts Redcliffs (and the Port Hills). Ultimately, failure on the NE and SE Faces of Redcliffs’ cliff was concluded to be global as every part of the exposed cliff face deposited a significant volume of material on the talus at the base of the cliff, with the exception of one section on the NE Face. The cliff collapses was a concurrent process that is a single (non-monotonic) event that operated as a complex series of (primarily) toppling rock falls, some sliding of blocks, and slumping of the soil mantle on top of the cliff. The first collapse had a mixture of equivalent continua slope movement of the heavily weathered / damaged surface of the cliff face, and discontinuous slope movement of the jointed inner slope (behind the heavily weathered surface); whereas the second collapse resulted in only discontinuous slope movement on account of the freshly exposed cliff face that had damage to the rock masses, in the form of old and (relatively) new discontinuous fractures, induced by earthquakes and aftershocks leading up to the point of failure.
During the 21st century, New Zealand has experienced increasing public concern over the quality of the design and appearance of new developments, and their effects on the urban environment. In response to this, a number of local authorities developed a range of tools to address this issue, including urban design panels to review proposals and provide independent advice. Following the 2010 and 2011 Canterbury earthquake sequence, the commitment to achieve high quality urban design within Christchurch was given further importance, with the city facing the unprecedented challenge of rebuilding a ‘vibrant and successful city’.
The rebuild and regeneration reinforced the need for independent design review, putting more focus and emphasis on the role and use of the urban design panel; first through collaboratively assisting applicants in achieving a better design outcome for their development by providing an independent set of eyes on their design; and secondly in assisting Council officers in forming their recommendations on resource consent decisions. However, there is a perception that urban design and the role of the urban design panel is not fully understood, with some stakeholders arguing that Council’s urban design requirements are adding cost and complexity to their developments.
The purpose of this research was to develop a better understanding on the role of the Christchurch urban design panel post-earthquake in the central city; its direct and indirect influence on the built environment; and the deficiencies in the broader planning framework and institutional settings that it might be addressing. Ultimately, the perceived role of the Panel is understood, and there is agreement that urban design is having a positive influence on the built environment, albeit viewed differently amongst the varying groups involved. What has become clear throughout this research is that the perceived tension between the development community and urban design well and truly exists, with the urban design panel contributing towards this. This tension is exacerbated further through the cost of urban design to developers, and the drive for financial return from their investments.
The panel, albeit promoting a positive experience, is simply a ‘tick box’ exercise for some, and as the research suggests, groups or professional are determining themselves what constitutes good urban design, based on their attitude, the context in which they sit and the financial constraints to incorporate good design elements. It is perhaps a bleak time for urban design, and more about building homes.
This research investigates creativity in a post-disaster setting. The data explore creativity at the intersection of the affected community of Christchurch, New Zealand and the social processes that followed the earthquakes of 2010 - 2012. Personal and contextual influences on creative ideas implemented for community or commercial benefit are also examined.
Viewed as creative, unique approaches to post-disaster problem solving were celebrated locally, nationally and internationally (Bergman, 2014; Wesener, 2015; Cloke & Conradson, 2018). Much has been written about creativity, particularly creativity in organisations and in business. However, little is known with regards to who creates after a disaster, why individuals choose to do so and what impact the post-disaster context has on their creative activity. This exploratory study draws on the literature from the fields of creativity, disasters, psychology, sociology and entrepreneurship to interpret first-hand accounts of people who acted on creative ideas in a physically and socially altered environment.
A mixed method - albeit predominantly qualitative - approach to data gathering was adopted that included interviews (n=45) with participants who had been the primary drivers of creative ideas implemented in Christchurch after September 2010 – the first major (7.1 magnitude) earthquake in a prolonged sequence of thousands of aftershocks.
Key findings include that a specific type of creativity results from the ‘collision’ between individuals and social processes activated by a disaster situation. This type of creativity could be best categorised as ‘little c’ or socially adaptive and emerges through a prosocial filter. There is wide consensus amongst creativity researchers - principally social psychologists - that for output to be considered creative it must be both novel and useful (Runco & Jaegar, 2012). There is greater tolerance for the novelty component after a disaster as novelty itself has greater utility, either as a distraction or because alternatives are few. Existing creativity models show context as input – an additional component of the creative process – but after a disaster the event itself becomes the catalyst for social processes that result in the creativity seen. Most participants demonstrated characteristics commonly associated with creativity and could be categorised as either a ‘free thinker’ and/or an ‘opportunist’. Some appear preadapted to create and thrive in unstable circumstances.
Findings from participants’ completion of a Ten Item Personality Inventory (TIPI) showed an apparent reduced need for extraversion in relation to implementing creative ventures in society. This factor, along with higher levels of agreeableness may indicate a potentially detrimental effect on the success of creative ideas established after a disaster, despite earnest intentions.
Three new models are presented to illustrate the key findings of this study. The models imply that disasters enhance both the perceived value of creativity and the desire to act creatively for prosocial ends. The models also indicate that these disaster influenced changes are likely to be temporary.
The impact of the Canterbury earthquake sequence of 2010-12 and its aftermath has been enormous. This inventory lists some of the thousands of community-led groups and initiatives across the region that have developed or evolved as a result of the quake. This inventory is the third such inventory to have been produced. The Christchurch Earthquake Activity Inventory was released by Landcare Research in May 2011, three months after the devastating 22 February 2011 earthquake. The second inventory, entitled An Inventory of Community-led Recovery Initiatives in Canterbury, was collated by Bailey Peryman and Dr Suzanne Vallance (Lincoln University) approximately one year after the February earthquake. The research for this third inventory was undertaken over a four month period from June to September 2013, and was conducted primarily through online searches.This research was undertaken with funding support from the Natural Hazards Platform and GNS, New Zealand.
Akaroa is a small township situated within Akaroa Harbour, on the southern side of Banks Peninsula. It is approximately 75 kilometres, or 90 minutes by car, from Christchurch City. At the 2006 Census of Population and Dwellings, the ‘usually resident’ population of the township was 510 people. In addition to the usually resident population, Akaroa has a large number of non-resident property owners/ratepayers, many of whom own holiday homes. Many of these holiday homes are available as
casual rentals (i.e., they may be occupied by people other than the property owners). The township acts as a service centre for the scattered population of the outer bays area of Akaroa Harbour, many
of whom work in Akaroa. Akaroa is a popular day trip or short stay destination for Christchurch residents. Akaroa is also known as a destination which draws upon the French heritage of its pioneer
settlers and the associated village charm derived from this heritage. Not unexpectedly, given the size and village character of Akaroa, the increase in cruise ship arrivals and passenger numbers has had an impact upon the town’s community.This research was commissioned and funded by Christchurch and Canterbury Tourism (CCT).
This paper identifies and analyses the networks of support for tangata whaiora (mental health clients) utilising a kaupapa Mäori health service following the Ötautahi/Christchurch earthquakes
in Aotearoa New Zealand from 2010 to 2012. Semi- structured interviews were undertaken with 39 participants, comprising clients (Mäori and Päkehä), staff, managers and board members of a kaupapa Mäori provider in the city. Selected quotes are presented alongside a social network analysis of the support accessed by all participants. Results show the signifi cant isolation of both Mäori and Päkehä mental health clients post- disaster and the complexity of individuals and collectives dealing with temporally and spatially overlapping hazards and disasters at personal, whänau and community level.
Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT.
This report discusses the experiences gained and lessons learned during a project management internship in post-earthquake Christchurch as part of the construction industry and rebuild effort.
During 2010 and 2011, a series of major earthquakes caused widespread damage in the city of Christchurch, New Zealand. The magnitude 6.3 quake in February 2011 caused 185 fatalities. In the ensuing months, the government progressively zoned residential land in Christchurch on the basis of its suitability for future occupation (considering damage from these quakes and future earthquake risk). Over 6,000 homes were placed in the ‘red-zone’, meaning that property owners were forced to sell their land to the Crown. This study analysed patterns of residential mobility amongst thirty-one red-zone households from the suburb of Southshore, Christchurch. Drawing on interviews and surveys, the research traced their experience from the zoning announcement until they had moved to a new residence. The research distinguished between short (before the zoning announcement) and long term (post the red zone ‘deadline’) forms of household relocation. The majority of households in the study were highly resistant to short term movement. Amongst those which did relocate before the zoning decision, the desire to maintain a valued social connection with a person outside of the earthquake environment was often an important factor. Some households also moved out of perceived necessity (e.g. due to lack of power or water). In terms of long-term relocation, concepts of affordability and safety were much more highly valued by the sample when purchasing post-quake property. This resulted in a distinct patterning of post-quake housing location choices. Perceived control over the moving process, relationship with government organisations and insurance companies, and time spent in the red-zone before moving all heavily influenced participants’ disaster experience. Contrary to previous studies, households in this study recorded higher levels of subjective well-being after relocating. The study proposed a typology of movers in the Christchurch post-disaster environment. Four mobility behaviours, or types, are identified: the Committed Stayers (CSs), the Environment Re-Creators (ERCs), the Resigned Acceptors (RAs), and the Opportunistic Movers (OMs). The CSs were defined by their immobility rather than their relocation aspirations, whilst the ERCs attempted to recreate or retain aspects of Southshore through their mobility. The RAs expressed a form of apathy towards the post-quake environment, whereas, on the other hand, the OMs moved relative to pre-earthquake plans, or opportunities that arose from the earthquake itself. Possibilities for further research include examining household adaptability to new residential environments and tracking further mobility patterns in the years following relocation from the red- zone.
Recent advances in timber design at the University of Canterbury have led to new structural systems that are appropriate for a wide range of building types, including multi-storey commercial office structures. These buildings are competitive with more traditional construction materials in terms of cost, sustainability and structural performance. This paper provides seismic design recommendations and analytical modelling approaches, appropriate for the seismic design of post-tensioned coupled timber wall systems. The models are based on existing seismic design theory for precast post-tensioned concrete, modified to more accurately account for elastic deformation of the timber wall systems and the influence of the floor system. Experimental test data from a two storey post-tensioned timber building, designed, constructed and tested at the University of Canterbury is used to validate the analytical models.
OPINION: Associate Professor MARK QUIGLEY, from the University of Canterbury's department of geological sciences, and Dr MATTHEW HUGHES, from its department of civil and natural resources engineering, survey the changing landscape of post-quake Christchurch.
On Tuesday 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, New Zealand’s second largest city. The ‘earthquake’ was in fact an aftershock to an earlier 7.1 magnitude earthquake that had occurred on Saturday 4 September 2010. There were a number of key differences between the two events that meant they had dramatically different results for Christchurch and its inhabitants. The 22 February 2011 event resulted in one of New Zealand’s worst natural disasters on record, with 185 fatalities occurring and hundreds more being injured. In addition, a large number of buildings either collapsed or were damaged to the point where they needed to be totally demolished. Since the initial earthquake in September 2010, a large amount of building-related research has been initiated in New Zealand to investigate the impact of the series of seismic events – the major focus of these research projects has been on seismic, structural and geotechnical engineering matters. One project, however, conducted jointly by the University of Canterbury, the Fire Protection Association of New Zealand and BRANZ, has focused on the performance of fire protection systems in the earthquakes and the effectiveness of the systems in the event of post-earthquake fires occurring. Fortunately, very few fires actually broke out following the series of earthquake events in Christchurch, but fire after earthquakes still has significant implications for the built environment in New Zealand, and the collaborative research has provided some invaluable insight into the potential threat posed by post-earthquake fires in buildings. As well as summarising the damage caused to fire protection systems, this paper discusses the flow-on effect for designing structures to withstand post-earthquake fires. One of the underlying issues that will be explored is the existing regulatory framework in New Zealand whereby structural earthquake design and structural design for fire are treated as discrete design scenarios.
The study contributes to a better understanding of utilisation and interaction patterns in post-disaster temporary urban open spaces. A series of devastating earthquakes caused large scale damage to Christchurch’s central city and many suburbs in 2010 and 2011. Various temporary uses have emerged on vacant post-earthquake sites including community gardens, urban agriculture, art installations, event venues, eateries and cafés, and pocket parks. Drawing on empirical data obtained from a spatial qualities survey and a Public Life Study, the report analyses how people used and interacted with three exemplary transitional community-initiated open spaces (CIOS) in relation to particular physical spatial qualities in central Christchurch over a period of three weeks. The report provides evidence that users of post-disaster transitional community-initiated open spaces show similar utilisation and interaction patterns in relation to specific spatial qualities as observed in other urban environments. The temporary status of CIOS did apparently not influence ‘typical’ utilisation and interaction patterns.
After a high-intensity seismic event, inspections of structural damages need to be carried out as soon as possible in order to optimize the emergency management, as well as improving the recovery time. In the current practice, damage inspections are performed by an experienced engineer, who physically inspect the structures. This way of doing not only requires a significant amount of time and high skilled human resources, but also raises the concern about the inspector’s safety. A promising alternative is represented using new technologies, such as drones and artificial intelligence, which can perform part of the damage classification task. In fact, drones can safely access high hazard components of the structures: for instance, bridge piers or abutments, and perform the reconnaissance by using highresolution cameras. Furthermore, images can be automatically processed by machine learning algorithms, and damages detected. In this paper, the possibility of applying such technologies for inspecting New Zealand bridges is explored. Firstly, a machine-learning model for damage detection by performing image analysis is presented. Specifically, the algorithm was trained to recognize cracks in concrete members. A sensitivity analysis was carried out to evaluate the algorithm accuracy by using database images. Depending on the confidence level desired,i.e. by allowing a manual classification where the alghortim confidence is below a specific tolerance, the accuracy was found reaching up to 84.7%. In the second part, the model is applied to detect the damage observed on the Anzac Bridge (GPS coordinates -43.500865, 172.701138) in Christchurch by performing a drone reconnaissance. Reults show that the accuracy of the damage detection was equal to 88% and 63% for cracking and spalling, respectively.
Based on a qualitative study of four organisations involving 47 respondents following the extensive 2010 – 2011 earthquakes in Christchurch, New Zealand, this paper presents some guidance for human resource practitioners dealing with post-disaster recovery. A key issue is the need for the human resource function to reframe its practices in a post-disaster context, developing a specific focus on understanding and addressing changing employee needs, and monitoring the leadership behaviour of supervisors. This article highlights the importance of flexible organisational responses based around a set of key principles concerning communication and employee perceptions of company support.
This report is the output of a longitudinal study that was established between the University of Auckland and Resilient Organisations, in conjunction with the Building Research Association of New Zealand (BRANZ), to evaluate the ongoing resource availability and capacity for post-earthquake reconstruction in Christchurch.
Creative temporary or transitional use of vacant urban open spaces is
seldom foreseen in traditional urban planning and has historically been
linked to economic or political disturbances. Christchurch, like most
cities, has had a relatively small stock of vacant spaces throughout
much of its history. This changed dramatically after an earthquake and
several damaging aftershocks hit the city in 2010 and 2011; temporary
uses emerged on post-earthquake sites that ran parallel to the “official”
rebuild discourse and programmes of action. The paper examines
a post-earthquake transitional community-initiated open space (CIOS)
in central Christchurch. CIOS have been established by local community
groups as bottom-up initiatives relying on financial sponsorship,
agreements with local landowners who leave their land for temporary
projects until they are ready to redevelop, and volunteers who build
and maintain the spaces. The paper discusses bottom-up governance
approaches in depth in a single temporary post-earthquake community
garden project using the concepts of community resilience and social
capital. The study analyses and highlights the evolution and actions of
the facilitating community organisation (Greening the Rubble) and the
impact of this on the project. It discusses key actors’ motivations and
values, perceived benefits and challenges, and their current involvement
with the garden. The paper concludes with observations and recommendations about the initiation of such projects and the challenges for those wishing to study ephemeral social recovery phenomena.
During the past two decades, the focus has been on the need to provide communities with structures that undergo minimal damage after an earthquake event while still being cost competitive. This has led to the development of high performance seismic resisting systems, and advances in design methodologies, in order respect this demand efficiently. This paper presents the experimental response of four pre-cast, post-tensioned rocking wall systems tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building, but are equally applicable for use in new design. Design of the wall followed a performance-based retrofit strategy in which structural limit states appropriate to both the post-tensioned wall and the existing building were considered. Dissipation for each of the four post-tensioned walls was provided via externally mounted devices, located in parallel to post-tensioned tendons for re-centring. This allowed the dissipation devices to be easily replaced or inspected following a major earthquake. Each wall was installed with viscous fluid dampers, tension-compression yielding steel dampers, a combination of both or no devices at all – thus relying on contact damping alone. The effectiveness of both velocity and displacement dependant dissipation are investigated for protection against far-field and velocity-pulse ground motion characteristics. The experimental results validate the behaviour of ‘Advanced Flag-Shape’ rocking, dissipating solutions which have been recently proposed and numerically tested. Maximum displacements and material strains were well controlled and within acceptable bounds, and residual deformations were minimal due to the re-centring contribution from the post-tensioned tendons. Damage was confined to inelastic yielding (or fluid damping) of the external dampers.
The Canterbury earthquakes that happened in 2010 and 2011 have attracted many migrant workers to the region to assist with the rebuilding effort. However, research on the impact of influx of migrants on the labour market outcomes of a local industry post-disaster is limited internationally and locally. The main objective of this study is to examine the impact of the Canterbury earthquakes on the changes in demographic composition and occupational structure for the local and foreign workers in the Greater Christchurch construction industry. Replicating the discrete dependent variable regression methods used in the study by Sisk and Bankston III (2014), this study also aimed to compare their findings on the impact of the influx of migrants on the New Orleans construction industry with outcomes in Greater Christchurch.
Customised data from New Zealand Censuses 2006 and 2013 were used to represent the pre- and post-earthquake periods. This study found that the rebuild has provided opportunities for migrant workers to enter the Greater Christchurch construction industry. The increased presence of migrant construction workers did not displace the locals. In fact, the likelihoods for both locals’ and migrants’ participation in the industry improved post-earthquakes. The earthquakes also increased overall workers’ participation at the lowest end of the occupational structure. However, the earthquakes created few significant changes to the distribution of local and migrant workers at the various occupational levels in the industry. Local workers still dominated all occupational levels post-earthquakes. The aggregated education levels of the construction workers were higher post-earthquakes, particularly among the migrant workers. Overall, migrant workers in the Greater Christchurch construction industry were more diverse, more educated and participated in higher occupational levels than migrants assisting in the New Orleans rebuild, due possibly to differences in immigration policies between New Zealand and the United States of America.