Cities need places that contribute to quality of life, places that support social interaction. Wellbeing, specifically, community wellbeing, is influenced by where people live, the quality of place is important and who they connect with socially. Social interaction and connection can come from the routine involvement with others, the behavioural acts of seeing and being with others. This research consisted of 38 interviews of residents of Christchurch, New Zealand, in the years following the 2010-12 earthquakes. Residents were asked about the place they lived and their interactions within their community. The aim was to examine the role of neighbourhood in contributing to local social connections and networks that contribute to living well. Specifically, it focused on the role and importance of social infrastructure in facilitating less formal social interactions in local neighbourhoods. It found that neighbourhood gathering places and bumping spaces can provide benefit for living well. Social infrastructure, like libraries, parks, primary schools, and pubs are some of the places of neighbourhood that contributed to how well people can encounter others for social interaction. In addition, unplanned interactions were facilitated by the existence of bumping places, such as street furniture. The wellbeing value of such spaces needs to be acknowledged and factored into planning decisions, and local rules and regulations need to allow the development of such spaces.
In this article we utilize grounded theory to explore women’s experiences in the unique construction industry context that followed the 2010 Canterbury (New Zealand) earthquakes. Data were obtained from 36 semi-structured interviews conducted with women working in a variety of occupations in the construction industry. We identify three inter-related categories: capitalizing on opportunity, demonstrating capability and surface tolerance, which together represent a response process that we label ‘deferential tailoring’. The deferential tailoring process explains how women intentionally shape their response to industry conditions through self-regulating behaviors that enables them to successfully seize opportunities and manage gender-related challenges in the working environment. Our findings challenge existing research which suggests that women adopt submissive coping strategies to conform to androcentric norms in the construction industry. Instead, we argue that the process of deferential tailoring can empower women to build positive workplace relationships, enhance career development, and help shift perceptions of the value of their work in the industry.
From 2010, Canterbury, a province of Aotearoa New Zealand, experienced three major disaster events. This study considers the socio-ecological impacts on cross-sectoral suicide prevention agencies and their service users of the 2010 – 2016 Canterbury earthquake sequence, the 2019 Christchurch mosque attacks and the COVID-19 pandemic in Canterbury. This study found the prolonged stress caused by these events contributed to a rise in suicide risk factors including anxiety, fear, trauma, distress, alcohol misuse, relationship breakdown, childhood adversity, economic loss and deprivation. The prolonged negative comment by the media on wellbeing in Canterbury was also unhelpful and affected morale. The legacy of these impacts was a rise in referrals to mental health services that has not diminished. This adversity in the socio-ecological system also produced post-traumatic growth, allowing Cantabrians to acquire resilience and help-seeking abilities to support them psychologically through the COVID-19 pandemic. Supporting parental and teacher responses, intergenerational support and targeted public health campaigns, as well as Māori family-centred programmes, strengthened wellbeing. The rise in suicide risk led to the question of what services were required and being delivered in Canterbury and how to enable effective cross-sectoral suicide prevention in Canterbury, deemed essential in all international and national suicide prevention strategies. Components from both the World Health Organisation Suicide Prevention Framework (WHO, 2012; WHO 2021) and the Collective Impact model (Hanleybrown et al., 2012) were considered by participants. The effectiveness of dynamic leadership and the essential conditions of resourcing a supporting agency were found as were the importance of processes that supported equity, lived experience and the partnership of Māori and non-Māori stakeholders. Cross-sectoral suicide prevention was found to enhance the wellbeing of participants, hastening learning, supporting innovation and raising awareness across sectors which might lower stigma. Effective communication was essential in all areas of cross-sectoral suicide prevention and clear action plans enabled measurement of progress. Identified components were combined to create a Collective Impact Suicide Prevention framework that strengthens suicide prevention implementation and can be applied at a local, regional and national level. This study contributes to cross-sectoral suicide prevention planning by considering the socio- ecological, policy and practice mitigations required to lower suicide risk and to increase wellbeing and post-traumatic growth, post-disaster. This study also adds to the growing awareness of the contribution that social work can provide to suicide prevention and conceptualises an alternative governance framework and practice and policy suggestions to support effective cross-sectoral suicide prevention.
The Covid-19 pandemic has brought to the foreground the importance of social connectedness for wellbeing, at the individual, community and societal level. Within the context of the local community, pro-connection facilities are fundamental to foster community development, resilience and public health. Through identifying the gap in social connectedness literature for Māori, this has created space for new opportunities and to reflect on what is already occurring in Ōtautahi. It is well documented that Māori experience unequal societal impacts across all health outcomes. Therefore, narrowing the inequities between Māori and non-Māori across a spectrum of dimensions is a priority. Evaluating the #WellconnectedNZ project, which explores the intersections between social connection and wellbeing is one way to trigger these conversations. This was achieved by curating a dissimilar set of community pro-connection facilities and organizing them into a Geographic Information System (GIS). Which firstly involved, the collecting and processing of raw data, followed by spatial analysis through creating maps, this highlighted the alignment between the distribution of places, population and social data. Secondly, statistical analysis focusing on the relationship between deprivation and accessibility. Finally, semi-structured interviews providing perceptions of community experience. This study describes findings following a kaupapa Māori research approach. Results demonstrated that, in general some meshblocks in Ōtautahi benefit from a high level of accessibility to pro-connection facilities; but with an urban-rural gradient (as is expected, further from the central business district (CBD) are less facilities). Additionally, more-deprived meshblocks in the Southern and Eastern suburbs of Christchurch have poorer accessibility, suggesting underlying social and spatial inequalities, likely exacerbated by Covid-19 and the Christchurch earthquakes. In this context, it is timely to (re)consider pro-connection places and their role in the development of social infrastructure for connected communities, in the community facility planning space. ‘We are all interwoven, we just need to make better connections’.
This thesis investigates life-safety risk in earthquakes. The first component of the thesis utilises a dataset of earthquake injuries and deaths from recent earthquakes in New Zealand to identify cause, context, and risk factors of injury and death in the 2011 MW6.3 Christchurch earthquake and 2016 MW7.8 Kaikōura earthquake. Results show that nearly all deaths occurred from being hit by structural elements from buildings, while most injuries were caused by falls, strains and being hit by contents or non-structural elements. Statistical analysis of injured cases compared to an uninjured control group found that age, gender, building damage, shaking intensity, and behaviour during shaking were the most significant risk factors for injury during these earthquakes. The second part of the thesis uses the empirical findings from the first section to develop two tools for managing life-safety risk in earthquakes. The first tool is a casualty estimation model for health system and emergency response planning. An existing casualty model used in New Zealand was validated against observed data from the 2011 Christchurch earthquake and found to underestimate moderate and severe injuries by an order of magnitude. The model was then updated to include human behaviour such as protective actions, falls and strain type injuries that are dependent on shaking intensity, as well as injuries and deaths outside buildings. These improvements resulted in a closer fit to observed casualties for the 2011 Christchurch earthquake. The second tool that was developed is a framework to set seismic loading standards for design based on fatality risk targets. The proposed framework extends the risk-targeted hazard method, by moving beyond collapse risk targets, to fatality risk targets for individuals in buildings and societal risk in cities. The framework also includes treatment of epistemic uncertainty in seismic hazard to allow this uncertainty to be used in risk-based decision making. The framework is demonstrated by showing how the current New Zealand loading standards could be revised to achieve uniform life-safety risk across the country and how the introduction of a new loading factor can reduce risk aggregation in cities. Not on Alma, moved and emailed. 1/02/2023 ce
<b>New Zealand has experienced several strong earthquakes in its history. While an earthquake cannot be prevented from occurring, planning can reduce its consequences when it does occur. This dissertation research examines various aspects of disaster risk management policy in Aotearoa New Zealand.</b>
Chapter 2 develops a method to rank and prioritise high-rise buildings for seismic retrofitting in Wellington, the earthquake-prone capital city of New Zealand. These buildings pose risks to Wellington’s long-term seismic resilience that are of clear concern to current and future policymakers. The prioritization strategy we propose, based on multi-criteria decision analysis (MCDA) methods, considers a variety of data on each building, including not only its structural characteristics, but also its location, its economic value to the city, and its social importance to the community around it. The study demonstrates how different measures, within four general criteria – life safety, geo-spatial location of the building, its economic role, and its socio-cultural role – can be operationalized into a viable framework for determining retrofitting/demolition policy priorities.
Chapter 3 and chapter 4 analyse the Residential Red Zone (RRR) program that was implemented in Christchurch after the 2011 earthquake. In the program, approximately 8,000 homeowners were told that their homes were no longer permittable, and they were bought by the government (through the Canterbury Earthquake Recovery Authority).
Chapter 3 examines the subjective wellbeing of the RRR residents (around 16000 people) after they were forced to move. We consider three indicators of subjective wellbeing: quality of life, stress, and emotional wellbeing. We found that demographic factors, health conditions, and the type of government compensation the residents accepted, were all significant determinants of the wellbeing of the Red Zone residents. More social relations, better financial circumstances, and the perception of better government communication were also all associated positively with a higher quality of life, less stress, and higher emotional wellbeing.
Chapter 4 concentrates on the impact of this managed retreat program on RRR residents’ income. We use individual-level comprehensive, administrative, panel data from Canterbury, and difference in difference evaluation method to explore the effects of displacement on Red Zone residential residents. We found that compared to non-relocated neighbours, the displaced people experience a significant initial decrease in their wages and salaries, and their total income. The impacts vary with time spent in the Red Zone and when they moved away. Wages and salaries of those who were red-zoned and moved in 2011 were reduced by 8%, and 5.4% for those who moved in 2012. Females faced greater decreases in wages and salaries, and total income, than males. There were no discernible impacts of the relocation on people’s self-employment income.
Rapid, reliable information on earthquake-affected structures' current damage/health conditions and predicting what would happen to these structures under future seismic events play a vital role in accelerating post-event evaluations, leading to optimized on-time decisions. Such rapid and informative post-event evaluations are crucial for earthquake-prone areas, where each earthquake can potentially trigger a series of significant aftershocks, endangering the community's health and wealth by further damaging the already-affected structures. Such reliable post-earthquake evaluations can provide information to decide whether an affected structure is safe to stay in operation, thus saving many lives. Furthermore, they can lead to more optimal recovery plans, thus saving costs and time. The inherent deficiency of visual-based post-earthquake evaluations and the importance of structural health monitoring (SHM) methods and SHM instrumentation have been highlighted within this thesis, using two earthquake-affected structures in New Zealand: 1) the Canterbury Television (CTV) building, Christchurch; 2) the Bank of New Zealand (BNZ) building, Wellington. For the first time, this thesis verifies the theoretically- and experimentally validated hysteresis loop analysis (HLA) SHM method for the real-world instrumented structure of the BNZ building, which was damaged severely due to three earthquakes. Results indicate the HLA-SHM method can accurately estimate elastic stiffness degradation for this reinforced concrete (RC) pinched structure across the three earthquakes, which remained unseen until after the third seismic event. Furthermore, the HLA results help investigate the pinching effects on the BNZ building's seismic response. This thesis introduces a novel digital clone modelling method based on the robust and accurate SHM results delivered by the HLA method for physical parameters of the monitored structure and basis functions predicting the changes of these physical parameters due to future earthquake excitations. Contrary to artificial intelligence (AI) based predictive methods with black-box designs, the proposed predictive method is entirely mechanics-based with an explicitly-understandable design, making them more trusted and explicable to stakeholders engaging in post-earthquake evaluations, such as building owners and insurance firms. The proposed digital clone modelling framework is validated using the BNZ building and an experimental RC test structure damaged severely due to three successive shake-table excitations. In both structures, structural damage intensifies the pinching effects in hysteresis responses. Results show the basis functions identified from the HLA-SHM results for both structures under Event 1 can online estimate structural damage due to subsequent Events 2-3 from the measured structural responses, making them valuable tool for rapid warning systems. Moreover, the digital twins derived for these two structures under Event 1 can successfully predict structural responses and damage under Events 2-3, which can be integrated with the incremental dynamic analysis (IDA) method to assess structural collapse and its financial risks. Furthermore, it enables multi-step IDA to evaluate earthquake series' impacts on structures. Overall, this thesis develops an efficient method for providing reliable information on earthquake-affected structures' current and future status during or immediately after an earthquake, considerably guaranteeing safety. Significant validation is implemented against both experimental and real data of RC structures, which thus clearly indicate the accurate predictive performance of this HLA-based method.