During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.
New Zealand's devastating Canterbury earthquakes provided an opportunity to examine the efficacy of existing regulations and policies relevant to seismic strengthening of vulnerable buildings. The mixed-methods approach adopted, comprising both qualitative and quantitative approaches, revealed that some of the provisions in these regulations pose as constraints to appropriate strengthening of earthquake-prone buildings. Those provisions include the current seismic design philosophy, lack of mandatory disclosure of seismic risks and ineffective timeframes for strengthening vulnerable buildings. Recommendations arising from these research findings and implications for pre-disaster mitigation for future earthquake and Canterbury's post-disaster reconstruction suggest: (1) a reappraisal of the requirements for earthquake engineering design and construction, (2) a review and realignment of all regulatory frameworks relevant to earthquake risk mitigation, and (3) the need to develop a national programme necessary to achieve consistent mitigation efforts across the country. These recommendations are important in order to present a robust framework where New Zealand communities such as Christchurch can gradually recover after a major earthquake disaster, while planning for pre-disaster mitigation against future earthquakes. AM - Accepted Manuscript
Christchurch earthquake events have raised questions on the adequacy of performance-based provisions in the current national building code. At present, in the building code the performance objectives are expressed in terms of safety and health criteria that could affect building occupants. In general, under the high intensity Christchurch events, buildings performed well in terms of life-safety (with a few exceptions) and it proved that the design practices adopted for those buildings could meet the performance objectives set by the building code. However, the damage incurred in those buildings resulted in unacceptably high economic loss. It is timely and necessary to revisit the objectives towards building performance in the building code and to include provisions for reducing economic implications in addition to the current requirements. Based on the observed performance of some buildings, a few specific issues in the current design practices that could have contributed to extensive damage have been identified and recommended for further research leading towards improved performance of structures. In particular, efforts towards innovative design/construction solutions with low-damage concepts are encouraged. New Zealand has been one of the leading countries in developing many innovative technologies. However, such technically advanced research findings usually face challenges towards implementation. Some of the reasons include: (i) lack of policy requirements; (iii) absence of demonstrated performance of new innovations to convince stakeholders; and (iv) non-existence of design guidelines. Such barriers significantly affect implementation of low damage construction and possible strategies to overcome those issues are discussed in this paper.
Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript
The Canterbury earthquakes, which started with the 7.1 magnitude event on September 4, 2010, caused significant damage in the region. The September 4 earthquakes brought substantial damage to land, buildings, and infrastructure, while the 6.3 magnitude earthquake on February 22, 2011 (and its subsequent aftershocks), brought even greater property damage, but also significant loss of life in addition to the region. Thousands were injured, and 185 persons died. A national State of Emergency was declared and remained in effect until April 30, 2011. A significant number of people required immediate assistance and support to deal with loss, injury, trauma experiences, and property damages. Many had to find alternate accommodation as their houses were too damaged to stay in. Of those affected, many were already vulnerable, and others had been too traumatized by the events to effectively deal with the challenges they were faced with. A number of human service organizations in the region, from both government and non-government sectors, joined forces to be able to more effectively and efficiently help those in need. This was the start of what would become known as the Earthquake Support Coordination Service. The aim of this report is to present an evaluation of the Earthquake Support Coordination Service and its collaborative organization, based on documentation and interviews with key stakeholders of the service. The aim is also to evaluate the service based on perspectives gathered among the clients as well as the coordinators working in the service. The final aim is to offer a reflection on the service model, and on what factors enabled the service, as well as recommendations regarding aspects of the service which may require review, and aspects which may be useful in other contexts.