Search

found 11 results

Research papers, University of Canterbury Library

This study followed two similarly affected, but socio-economically disparate suburbs as residents responded to and attempted to recover from the devastating 6.3 magnitude earthquake that struck Christchurch, New Zealand, on February 22, 2011. More specifically, it focuses on the role of local churches, community-based organisations (CBOs) and non-governmental organisations (NGOs), here referred to broadly as civil society, in meeting the immediate needs of local residents and assisting with the longer-term recovery of each neighbourhood. Despite considerable socioeconomic differences between the two neighbourhoods, civil society in both suburbs has been vital in addressing the needs of locals in the short and long term following the earthquake. Institutions were able to utilise local knowledge of both residents and the extent of damage in the area to a) provide a swifter local response than government or civil defence and then help direct the relief these agencies provided locally; b) set up central points for distribution of supplies and information where locals would naturally gather; c) take action on what were perceived to be unmet needs; and d) act as a way of bridging locals to a variety of material, informational, and emotional resources. However the findings also support literature which indicates that other factors are also important in understanding neighbourhood recovery and the role of civil society, including: local leadership; a shared, place-based identity; the type and form of civil society organizations; social capital; and neighbourhood- and household-level indicators of relative vulnerability and inequality. The intertwining of these various factors seems to influence how these neighbourhoods have coped with and taken steps in recovering from this disaster. It is recommended that future research be directed at developing a better understanding of how this occurs. It is suggested that a model similar to Yasui’s (2007) Community Vulnerability and Capacity model be developed as a useful way to approach future research in this area.

Research papers, University of Canterbury Library

The Canterbury earthquakes have generated economic demand and supply volatility, highlighting geographical and structural interdependencies. Post-earthquake reconstruction and new developments have seen skills training, relocation, recruitment and importation of skills becoming crucial for construction companies to meet demand and compete effectively. This report presents 15 case studies from a range of organisations involved in the Canterbury rebuild, exploring the business dynamics and outcomes of their resourcing initiatives. A key finding of this research is that, for many construction organisations, resourcing initiatives have become part of their organisational longer-term development strategies, rather than simply a response to ‘supply and demand’ pressures. Organisations are not relying on any single resourcing solution to drive their growth but use a combination of initiatives to create lasting business benefits, such as cost savings, improved brand and reputation, a stable and productive workforce, enhanced efficiency and staff morale, as well as improved skill levels.

Research papers, University of Canterbury Library

During 2010 and 2011, a series of major earthquakes caused widespread damage in the city of Christchurch, New Zealand. The magnitude 6.3 quake in February 2011 caused 185 fatalities. In the ensuing months, the government progressively zoned residential land in Christchurch on the basis of its suitability for future occupation (considering damage from these quakes and future earthquake risk). Over 6,000 homes were placed in the ‘red-zone’, meaning that property owners were forced to sell their land to the Crown. This study analysed patterns of residential mobility amongst thirty-one red-zone households from the suburb of Southshore, Christchurch. Drawing on interviews and surveys, the research traced their experience from the zoning announcement until they had moved to a new residence. The research distinguished between short (before the zoning announcement) and long term (post the red zone ‘deadline’) forms of household relocation. The majority of households in the study were highly resistant to short term movement. Amongst those which did relocate before the zoning decision, the desire to maintain a valued social connection with a person outside of the earthquake environment was often an important factor. Some households also moved out of perceived necessity (e.g. due to lack of power or water). In terms of long-term relocation, concepts of affordability and safety were much more highly valued by the sample when purchasing post-quake property. This resulted in a distinct patterning of post-quake housing location choices. Perceived control over the moving process, relationship with government organisations and insurance companies, and time spent in the red-zone before moving all heavily influenced participants’ disaster experience. Contrary to previous studies, households in this study recorded higher levels of subjective well-being after relocating. The study proposed a typology of movers in the Christchurch post-disaster environment. Four mobility behaviours, or types, are identified: the Committed Stayers (CSs), the Environment Re-Creators (ERCs), the Resigned Acceptors (RAs), and the Opportunistic Movers (OMs). The CSs were defined by their immobility rather than their relocation aspirations, whilst the ERCs attempted to recreate or retain aspects of Southshore through their mobility. The RAs expressed a form of apathy towards the post-quake environment, whereas, on the other hand, the OMs moved relative to pre-earthquake plans, or opportunities that arose from the earthquake itself. Possibilities for further research include examining household adaptability to new residential environments and tracking further mobility patterns in the years following relocation from the red- zone.

Research papers, University of Canterbury Library

In this paper, the characteristics of near-fault ground motions recorded during the Mw7.1 Darfield and Mw 6.2 Christchurch earthquakes are examined and compared with existing empirical models. The characteristics of forward-directivity effects are first examined using a wavelet-based pulse-classification algorithm. This is followed by an assessment of the adequacy of empirical models which aim to capture the effect of directivity effects on amplifying the acceleration response spectra; and the period and peak velocity of the forward-directivity pulse. It is illustrated that broadband directivity models developed by Somerville et al. (1997) and Abrahamson (2000) generally under-predict the observed amplification of response spectral ordinates at longer vibration periods. In contrast, a recently developed narrowband model by Shahi and Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods surrounding the directivity pulse period. Although the empirical predictions of the pulse period are generally favourable for the Christchurch earthquake, the observations from the Darfield earthquake are significantly under-predicted. The elongation in observed pulse periods is inferred as being a result of the soft sedimentary soils of the Canterbury basin. However, empirical predictions of the observed peak velocity associated with the directivity pulse are generally adequate for both events.

Research papers, University of Canterbury Library

Ground motion observations from the most significant 10 events in the 2010-2011 Canterbury earthquake sequence at near-source sites are utilized to scrutinize New Zealand (NZ)-specific pseudo-spectral acceleration (SA) empirical ground motion prediction equations (GMPE) (Bradley 2010, Bradley 2013, McVerry et al. 2006). Region-specific modification factors based on relaxing the conventional ergodic assumption in GMPE development were developed for the Bradley (2010) model. Because of the observed biases with magnitude and source-to-site distance for the McVerry et al. (2006) model it is not possible to develop region-specific modification factors in a reliable manner. The theory of non-ergodic empirical ground motion prediction is then outlined, and applied to this 10 event dataset to determine systematic effects in the between- and within-event residuals which lead to modifications in the predicted median and standard deviation of the GMPE. By examining these systematic effects over sub-regions containing a total of 20 strong motion stations within the Canterbury area, modification factors for use in region-specific ground motion prediction are proposed. These modification factors, in particular, are suggested for use with the Bradley et al. (2010) model in Canterbury-specific probabilistic seismic hazard analysis (PSHA) to develop revised design response, particularly for long vibration periods.

Research papers, University of Canterbury Library

The purpose of this thesis is to conduct a detailed examination of the forward-directivity characteristics of near-fault ground motions produced in the 2010-11 Canterbury earthquakes, including evaluating the efficacy of several existing empirical models which form the basis of frameworks for considering directivity in seismic hazard assessment. A wavelet-based pulse classification algorithm developed by Baker (2007) is firstly used to identify and characterise ground motions which demonstrate evidence of forward-directivity effects from significant events in the Canterbury earthquake sequence. The algorithm fails to classify a large number of ground motions which clearly exhibit an early-arriving directivity pulse due to: (i) incorrect pulse extraction resulting from the presence of pulse-like features caused by other physical phenomena; and (ii) inadequacy of the pulse indicator score used to carry out binary pulse-like/non-pulse-like classification. An alternative ‘manual’ approach is proposed to ensure 'correct' pulse extraction and the classification process is also guided by examination of the horizontal velocity trajectory plots and source-to-site geometry. Based on the above analysis, 59 pulse-like ground motions are identified from the Canterbury earthquakes , which in the author's opinion, are caused by forward-directivity effects. The pulses are also characterised in terms of their period and amplitude. A revised version of the B07 algorithm developed by Shahi (2013) is also subsequently utilised but without observing any notable improvement in the pulse classification results. A series of three chapters are dedicated to assess the predictive capabilities of empirical models to predict the: (i) probability of pulse occurrence; (ii) response spectrum amplification caused by the directivity pulse; (iii) period and amplitude (peak ground velocity, PGV) of the directivity pulse using observations from four significant events in the Canterbury earthquakes. Based on the results of logistic regression analysis, it is found that the pulse probability model of Shahi (2013) provides the most improved predictions in comparison to its predecessors. Pulse probability contour maps are developed to scrutinise observations of pulses/non-pulses with predicted probabilities. A direct comparison of the observed and predicted directivity amplification of acceleration response spectra reveals the inadequacy of broadband directivity models, which form the basis of the near-fault factor in the New Zealand loadings standard, NZS1170.5:2004. In contrast, a recently developed narrowband model by Shahi & Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods. The significant positive bias demonstrated by the residuals associated with all models at longer vibration periods (in the Mw7.1 Darfield and Mw6.2 Christchurch earthquakes) is likely due to the influence of basin-induced surface waves and non-linear soil response. Empirical models for the pulse period notably under-predict observations from the Darfield and Christchurch earthquakes, inferred as being a result of both the effect of nonlinear site response and influence of the Canterbury basin. In contrast, observed pulse periods from the smaller magnitude June (Mw6.0) and December (Mw5.9) 2011 earthquakes are in good agreement with predictions. Models for the pulse amplitude generally provide accurate estimates of the observations at source-to-site distances between 1 km and 10 km. At longer distances, observed PGVs are significantly under-predicted due to their slower apparent attenuation. Mixed-effects regression is employed to develop revised models for both parameters using the latest NGA-West2 pulse-like ground motion database. A pulse period relationship which accounts for the effect of faulting mechanism using rake angle as a continuous predictor variable is developed. The use of a larger database in model development, however does not result in improved predictions of pulse period for the Darfield and Christchurch earthquakes. In contrast, the revised model for PGV provides a more appropriate attenuation of the pulse amplitude with distance, and does not exhibit the bias associated with previous models. Finally, the effects of near-fault directivity are explicitly included in NZ-specific probabilistic seismic hazard analysis (PSHA) using the narrowband directivity model of Shahi & Baker (2011). Seismic hazard analyses are conducted with and without considering directivity for typical sites in Christchurch and Otira. The inadequacy of the near-fault factor in the NZS1170.5: 2004 is apparent based on a comparison with the directivity amplification obtained from PSHA.

Research papers, The University of Auckland Library

Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript

Research papers, University of Canterbury Library

his poster presents the ongoing development of a 3D Canterbury seismic velocity model which will be used in physics-based hybrid broadband ground motion simulation of the 2010-2011 Canterbury earthquakes. Velocity models must sufficiently represent critical aspects of the crustal structure over multiple length scales which will influence the results of the simulations. As a result, numerous sources of data are utilized in order to provide adequate resolution where necessary. Figure 2: (a) Seismic reflection line showing P-wave velocities and significant geologic horizons (Barnes et al. 2011), and (b) Shear wave profiles at 10 locations (Stokoe et al. 2013). Figure 4: Cross sections of the current version of the Canterbury velocity model to depths of 10km as shown in Figure 1: (a) at a constant latitude value of -43.6˚, and (b) at a constant longitude value of 172.64˚. 3. Ground Surface and Geologic Horizon Models Figure 3: (a) Ground surface model derived from numerous available digital elevation models, and (b) Base of the Quaternary sediments derived from structural contours and seismic reflection line elevations. The Canterbury region has a unique and complex geology which likely has a significant impact on strong ground motions, in particular the deep and loose deposits of the Canterbury basin. The Canterbury basin has several implications on seismic wave phenomena such as long period ground motion amplification and wave guide effects. Using a realistic 3D seismic velocity model in physics-based ground motion simulation will implicitly account for such effects and the resultant simulated ground motions can be studied to gain a fundamental understanding of the salient ground motion phenomena which occurred during the Canterbury earthquakes, and the potential for repeat occurrences in the Canterbury region. Figure 1 shows the current model domain as a rectangular area between Lat=[-43.2˚,-44.0˚], and Lon=[171.5˚,173.0˚]. This essentially spans the area between the foot of the Southern Alps in the North West to Banks Peninsula in the East. Currently the model extends to a depth of 50km below sea level.

Research papers, University of Canterbury Library

This poster provides a comparison between the strong ground motions observed in the 22 February 2011 Mw6.3 Christchurch earthquake with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. The destuction resulting from both of these events has been well documented, although tsunami was the principal cause of damage in the latter event, and less attention has been devoted to the impact of earthquake-induced ground motions. Despite Tokyo being located over 100km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were significant enough to cause structural damage and also significant liquefaction to loose reclaimed soils in Tokyo Bay. The author was fortunate enough (from the perspective of an earthquake engineer) to experience first-hand both of these events. Following the Tohoku event, the athor conducted various ground motion analyses and reconniassance of the Urayasu region in Tokyo Bay affected by liquefaction in collaboration with Prof. Kenji Ishihara. This conference is therefore a fitting opportunity in which to discuss some of authors insights obtained as a result of this first hand knowledge. Figure 1 illustrates the ground motions recorded in the Christchurch CBD in the 22 February 2011 and 4 September 2010 earthquakes, with that recorded in Tokyo Bay in the 11 March 2011 Tohoku earthquake. It is evident that these three ground motions vary widely in their amplitude and duration. The CBGS ground motion from the 22 February 2011 event has a very large amplitude (nearly 0.6g) and short duration (approx. 10s of intense shaking), as a result of the causal Mw6.3 rupture at short distance (Rrup=4km). The CBGS ground motion from the 4 September 2010 earthquake has a longer duration (approx. 30s of intense shaking), but reduced acceleration amplitude, as a result of the causal Mw7.1 rupture at a short-to-moderate distance (Rrup=14km). Finally, the Urayasu ground motion in Tokyo bay during the 11 March 2011 Tohoku earthquake exhibits an acceleration amplitude similar to the 4 September 2010 CBGS ground motion, but a significantly larger duration (approx 150s of intense shaking). Clearly, these three different ground motions will affect structures and soils in different ways depending on the vibration characteristics of the structures/soil, and the potential for strength and stiffness degradation due to cumulative effects. Figure 2 provides a comparison between the arias intensities of the several ground motion records from the three different events. It can be seen that the arias intensities of the ground motions in the Christchurch CBD from the 22 February 2011 earthquake (which is on average AI=2.5m/s) is approximately twice that from the 4 September 2010 earthquake (average AI≈1.25). This is consistent with a factor of approximately 1.6 obtained by Cubrinovski et al. (2011) using the stress-based (i.e.PGA-MSF) approach of liquefaction triggering. It can also be seen that the arias intensity of the ground motions recorded in Tokyo during the 2011 Tohoku earthquake are larger than ground motions in the Christchurch CBD from the 4 September 2011 earthquake, but smaller than those of the 22 February 2011 earthquake. Based on the arias intensity liquefaction triggering approach it can therefore be concluded that the ground motion severity, in terms of liquefaction potential, for the Tokyo ground motions is between those ground motions in Christchurch CBD from the 4 September 2010 and 22 February 2011 events.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are

Research papers, University of Canterbury Library

Geosynthetic reinforced soil (GRS) walls involve the use of geosynthetic reinforcement (polymer material) within the retained backfill, forming a reinforced soil block where transmission of overturning and sliding forces on the wall to the backfill occurs. Key advantages of GRS systems include the reduced need for large foundations, cost reduction (up to 50%), lower environmental costs, faster construction and significantly improved seismic performance as observed in previous earthquakes. Design methods in New Zealand have not been well established and as a result, GRS structures do not have a uniform level of seismic and static resistance; hence involve different risks of failure. Further research is required to better understand the seismic behaviour of GRS structures to advance design practices. The experimental study of this research involved a series of twelve 1-g shake table tests on reduced-scale (1:5) GRS wall models using the University of Canterbury shake-table. The seismic excitation of the models was unidirectional sinusoidal input motion with a predominant frequency of 5Hz and 10s duration. Seismic excitation of the model commenced at an acceleration amplitude level of 0.1g and was incrementally increased by 0.1g in subsequent excitation levels up to failure (excessive displacement of the wall panel). The wall models were 900mm high with a full-height rigid facing panel and five layers of Microgird reinforcement (reinforcement spacing of 150mm). The wall panel toe was founded on a rigid foundation and was free to slide. The backfill deposit was constructed from dry Albany sand to a backfill relative density, Dr = 85% or 50% through model vibration. The influence of GRS wall parameters such as reinforcement length and layout, backfill density and application of a 3kPa surcharge on the backfill surface was investigated in the testing sequence. Through extensive instrumentation of the wall models, the wall facing displacements, backfill accelerations, earth pressures and reinforcement loads were recorded at the varying levels of model excitation. Additionally, backfill deformation was also measured through high-speed imaging and Geotechnical Particle Image Velocimetry (GeoPIV) analysis. The GeoPIV analysis enabled the identification of the evolution of shear strains and volumetric strains within the backfill at low strain levels before failure of the wall thus allowing interpretations to be made regarding the strain development and shear band progression within the retained backfill. Rotation about the wall toe was the predominant failure mechanism in all excitation level with sliding only significant in the last two excitation levels, resulting in a bi-linear displacement acceleration curve. An increase in acceleration amplification with increasing excitation was observed with amplification factors of up to 1.5 recorded. Maximum seismic and static horizontal earth pressures were recorded at failure and were recorded at the wall toe. The highest reinforcement load was recorded at the lowest (deepest in the backfill) reinforcement layer with a decrease in peak load observed at failure, possibly due to pullout failure of the reinforcement layer. Conversely, peak reinforcement load was recorded at failure for the top reinforcement layer. The staggered reinforcement models exhibited greater wall stability than the uniform reinforcement models of L/H=0.75. However, similar critical accelerations were determined for the two wall models due to the coarseness of excitation level increments of 0.1g. The extended top reinforcements were found to restrict the rotational component of displacement and prevented the development of a preliminary shear band at the middle reinforcement layer, contributing positively to wall stability. Lower acceleration amplification factors were determined for the longer uniform reinforcement length models due to reduced model deformation. A greater distribution of reinforcement load towards the top two extended reinforcement layers was also observed in the staggered wall models. An increase in model backfill density was observed to result in greater wall stability than an increase in uniform reinforcement length. Greater acceleration amplification was observed in looser backfill models due to their lower model stiffness. Due to greater confinement of the reinforcement layers, greater reinforcement loads were developed in higher density wall models with less wall movement required to engage the reinforcement layers and mobilise their resistance. The application of surcharge on the backfill was observed to initially increase the wall stability due to greater normal stresses within the backfill but at greater excitation levels, the surcharge contribution to wall destabilising inertial forces outweighs its contribution to wall stability. As a result, no clear influence of surcharge on the critical acceleration of the wall models was observed. Lower acceleration amplification factors were observed for the surcharged models as the surcharge acts as a damper during excitation. The application of the surcharge also increases the magnitude of reinforcement load developed due to greater confinement and increased wall destabilising forces. The rotation of the wall panel resulted in the progressive development of shears surface with depth that extended from the backfill surface to the ends of the reinforcement (edge of the reinforced soil block). The resultant failure plane would have extended from the backfill surface to the lowest reinforcement layer before developing at the toe of the wall, forming a two-wedge failure mechanism. This is confirmed by development of failure planes at the lowest reinforcement layer (deepest with the backfill) and at the wall toe observed at the critical acceleration level. Key observations of the effect of different wall parameters from the GeoPIV results are found to be in good agreement with conclusions developed from the other forms of instrumentation. Further research is required to achieve the goal of developing seismic guidelines for GRS walls in geotechnical structures in New Zealand. This includes developing and testing wall models with a different facing type (segmental or wrap-around facing), load cell instrumentation of all reinforcement layers, dynamic loading on the wall panel and the use of local soils as the backfill material. Lastly, the limitations of the experimental procedure and wall models should be understood.