Search

found 84 results

Research papers, University of Canterbury Library

This participant-observation study explores the process of gathering and evaluating both financial and non-financial information and communication and transfer of that information within a medium-size Electrical Company in Christchurch, New Zealand. The previous literature has established the importance and the main characteristics of small and medium enterprises (SMEs), mainly studying manufacturing companies. However, there has been little research done in New Zealand on the overall communication process and the financial and non-financial information usage in a small-medium enterprise. Face-to-face interviews were carried out with all the office employees and two partners, along with a ten month participant-observation in the Electrical Company in order to understand how financial and non-financial information is communicated and processed in an SME. Also, research in an SME that has overcome the 2008 economic depression and several major earthquakes allows a deep understanding of lessons learned and what is valued by the Electrical Company. The research has found characteristics of this SME similar to those that have been mentioned in previous literature. However, the partners of the Electrical Company understand the importance of financial management and use financial information extensively to ensure the business expenses are under control. Moreover, the partners use more than just financial information to manage the company. They gather non-financial information through talking to their accountant, their customers and people in the same industry and they keenly follow the news on the rebuilding of Christchurch.

Research papers, University of Canterbury Library

The University of Canterbury CEISMIC Canterbury Earthquake Digital Archive draws on the example of the Centre for History and New Media’s (CHNM) September 11 Archive, which was used to collect digital artefacts after the bombing of the World Trade Centre buildings in 2001, but has gone significantly further than this project in its development as a federated digital archive. The new University of Canterbury Digital Humanities Programme – initiated to build the archive – has gathered together a Consortium of major national organizations to contribute content to a federated archive based on principles of openness and collaboration derived directly from the international digital humanities community.

Research papers, University of Canterbury Library

This participant-observation study explores the process of gathering and evaluating both financial and non-financial information and communication and transfer of that information within a medium-sized electrical service company in Christchurch, New Zealand. The previous literature has established the importance and the main characteristics of small and medium enterprises, mainly studying manufacturing companies. However, there has been little research done in New Zealand on the overall communication process and the financial and non-financial information usage in a small-medium enterprise. The Electrical Company has a flat structure which allows flexibility. The two owners understand the importance of financial management and use financial information extensively to ensure the business expenses are under control. The owners also gather and use non-financial information through talking to their accountant, their customers and people in the same industry and they keenly follow the news on the rebuilding of Christchurch after the recent earthquakes.

Research papers, University of Canterbury Library

In this paper we introduce CityViewAR, a mobile outdoor Augmented Reality (AR) application for providing AR information visualization on a city scale. The CityViewAR application was developed to provide geographical information about the city of Christchurch, which was hit by several major earthquakes in 2010 and 2011. The application provides information about destroyed buildings and historical sites that were affected by the earthquakes. The geo-located content is provided in a number of formats including 2D map views, AR visualization of 3D models of buildings on-site, immersive panorama photographs, and list views. The paper describes the iterative design and implementation details of the application, and gives one of the first examples of a study comparing user response to AR and non-AR viewing in a mobile tourism application. Results show that making such information easily accessible to the public in a number of formats could help people to have richer experience about cities. We provide guidelines that will be useful for people developing mobile AR applications for city-scale tourism or outdoor guiding, and discuss how the underlying technology could be used for applications in other areas.

Research papers, University of Canterbury Library

The objective of this project is to collect perishable seismic response data from the baseisolated Christchurch Women's Hospital. The strong and continuing sequence of aftershocks presents a unique opportunity to capture high-fidelity data from a modern base-isolated facility. These measurements will provide quantitative information required to assess the mechanisms at play in this and in many other seismically-isolated structures.

Research papers, The University of Auckland Library

During many years the analysis of some geophysical results of Charles Darwin was being carried out in Department. Darwin has connected almost 200 years ago results of catastrophic earthquakes with vertical movement of a surface of the Earth. Usually this movement less horizontal movement and its influence on destruction of cities is not considered. Earthquake hazard assessment studies were focused usually on the horizontal ground motion. Effects of the strong vertical motion were not, practically, discussed. The margins of safety against gravity-induced static vertical forces in constructed buildings usually provide adequate resistance to dynamic forces induced by the vertical acceleration during an earthquake. However, the earthquake in Christchurch is an example of the vertical seismic shock . The earthquake magnitude was rather small - nearby 6.3. However, the result was catastrophic. The same took place in 1835. It allowed to Darwin to formulate a few great ideas. Charles Darwin has explained qualitatively results of an interaction of huge seismic waves with volcanoes and the nature of volcanism and seismicity of our planet. These important data of Charles Darwin became very actual recently. It is possible to tell also the same about tsunami and extreme ocean waves described by Charles Darwin. Therefore this data were analyzed using modern mechanics, mathematics and physics in Department. In particular, the theory of catastrophic waves was developed based on Darwin's data. The theory tried to explain occurrence, evolution and distribution the catastrophic waves in various natural systems, since atoms, oceans, surfaces of the Earth and up to the very early Universe. Some results of the research were published in prestigious magazines. Later they were presented in two books devoted to Charles Darwin's anniversary (2009). Last from them was published in Russian (2011). We give here key ideas of this research which is a part of interdisciplinary researches of Department. Some ideas are discussed. Not less important purpose is very short historical review of some researches of Darwin. In particular, we underline Darwin' priority in the formulation of the bases of Dynamics Earth.

Research papers, The University of Auckland Library

The Darfield earthquake caused widespread damage in the Canterbury region of New Zealand, with the majority of damage resulting from liquefaction and lateral spreading. One of the worst hit locations was the small town of Kaiapoi north of Christchurch, an area that has experienced liquefaction during past events and has been identified as highly susceptible to liquefaction. The low lying town sits on the banks of the Kaiapoi River, once a branch of the Waimakariri, a large braided river transporting gravelly sediment. The Waimakariri has been extensively modified both by natural and human processes, consequently many areas in and around the town were once former river channels.

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury earthquakes a detailed campaign of door to door assessments was conducted in a variety of areas of Christchurch to establish the earthquake performance of residential dwellings having masonry veneer as an external cladding attached to a lightweight timber framing system. Specifically, care was taken to include regions of Christchurch which experienced different levels of earthquake shaking in order to allow comparison between the performance of different systems and different shaking intensities. At the time of the inspections the buildings in the Christchurch region had been repeatedly subjected to large earthquakes, presenting an opportunity for insight into the seismic performance of masonry veneer cladding. In total just under 1100 residential dwellings were inspected throughout the wider Christchurch area, of which 24% were constructed using the older nail-on veneer tie system (prior to 1996) and 76% were constructed using screw fixed ties to comply with the new 1996 standards revision (post-1996), with 30% of all inspected houses being of two storey construction. Of the inspected dwellings 27% had some evidence of liquefaction, ground settlement or lateral spreading. Data such as damage level, damage type, crack widths, level of repair required and other parameters were collected during the survey. A description of the data collection processes and a snapshot of the analysis results are presented within. http://15ibmac.com/home/

Research papers, The University of Auckland Library

Following the 22 February 2011 Christchurch earthquake a comprehensive damage survey of the unreinforced masonry (URM) building stock of Christchurch city, New Zealand was undertaken. Because of the large number of aftershocks associated with both the 2011 Christchurch earthquake and the earlier 4 September 2010 Darfield earthquake, and the close proximity of their epicentres to Christchurch city, this earthquake sequence presented a unique opportunity to assess the performance of URM buildings and the various strengthening methods used in New Zealand to increase the performance of these buildings in earthquakes. Because of the extent of data that was collected, a decision was made to initially focus exclusively on the earthquake performance of URM buildings located in the central business district (CBD) of Christchurch city. The main objectives of the data collection exercise were to document building characteristics and any seismic strengthening methods encountered, and correlate these attributes with observed earthquake damage. In total 370 URM buildings in the CBD were surveyed. Of the surveyed buildings, 62% of all URM buildings had received some form of earthquake strengthening and there was clear evidence that installed earthquake strengthening techniques in general had led to reduced damage levels. The procedure used to collect and process information associated with earthquake damage, general analysis and interpretation of the available survey data for the 370 URM buildings, the performance of earthquake strengthening techniques, and the influence of earthquake strengthening levels on observed damage are reported within. http://15ibmac.com/home/

Research papers, The University of Auckland Library

The Catholic Cathedral of the Blessed Sacrament is a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes. The building experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to securing the building, and the interaction of the structural, heritage and safety demands involved in a dynamic seismic risk environment. We briefly cover the types of failures observed and the behaviour of the structure, and investigate the performance of both strengthened and un-strengthened parts of the building. Seismic strengthening options are investigated at a conceptual level. We draw conclusions as to how the building performed in the earthquakes, comment on the effectiveness of the strengthening and securing work and discuss the potential seismic strengthening methods.

Research papers, The University of Auckland Library

During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.

Research papers, The University of Auckland Library

The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, the damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described. A detailed technical description of the most prevalently observed failure mechanisms is provided, with reference to recognised failure modes for unreinforced masonry structures. The observed performance of existing seismic retrofit interventions is also provided, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the vulnerability of similar strengthening techniques when applied to unreinforced stone masonry structures.

Research papers, The University of Auckland Library

In 2010 and 2011, Aotearoa New Zealand was hit by a number of major disasters involving loss of human life and severe disruption to social, ecological and economic wellbeing. The Pike River mine explosions were closely followed by a sequence of major earthquakes in Christchurch, seismic events that have permanently altered the lives of thousands of people in our third largest city, the closure of the central business district and the effective abandonment of whole residential areas. In early October 2011, the ship, Rena, grounded on a reef off the port of Tauranga and threatened a major oil spill throughout the Bay of Plenty, where local communities with spiritual and cultural connections to the land depend on sea food as well as thrive on tourism. The Council for Social Work Education Aotearoa New Zealand (CSWEANZ), representing all the Schools of Social Work in New Zealand, held a ‘Disaster Curriculum’ day in November 2011, at which social workers and Civil Defence leaders involved in the Christchurch earthquakes, the Rena Disaster, Fiji floods and the Boxing Day tsunami presented their narrative experience of disaster response and recovery. Workshops discussed and identified core elements that participants considered vital to a social work curriculum that would enable social work graduates in a range of community and cultural settings to respond in safe, creative and informed ways. We present our core ideas for a social work disaster curriculum and consider a wide range of educational content based on existing knowledge bases and new content within a disaster framework. http://www.swsd-stockholm-2012.org/

Research papers, The University of Auckland Library

Following the magnitude 6.3 aftershock in Christchurch, New Zealand, on 22 February 2011, a number of researchers were sent to Christchurch as part of the New Zealand Natural Hazard Research Platform funded “Project Masonry” Recovery Project. Their goal was to document and interpret the damage to the masonry buildings and churches in the region. Approximately 650 unreinforced and retrofitted clay brick masonry buildings in the Christchurch area were surveyed for commonly occurring failure patterns and collapse mechanisms. The entire building stock of Christchurch, and in particular the unreinforced masonry building stock, is similar to that in the rest of New Zealand, Australia, and abroad, so the observations made here are relevant for the entire world.

Research papers, The University of Auckland Library

Two days after the 22 February 2011 M6.3 earthquake in Christchurch, New Zealand, three of the authors conducted a transect of the central city, with the goal of deriving an estimate of building damage levels. Although smaller in magnitude than the M7.1 4 September 2010 Darfield earthquake, the ground accelerations, ground deformation and damage levels in Christchurch central city were more severe in February 2011, and the central city was closed down to the general public. Written and photographic notes of 295 buildings were taken, including construction type, damage level, and whether the building would likely need to be demolished. The results of the transect compared favourably to Civil Defence rapid assessments made over the following month. Now, more than one year and two major aftershocks after the February 2011 earthquake these initial estimates are compared to the current demolition status to provide an updated understanding of the state of central Christchurch.

Research papers, The University of Auckland Library

Following the Christchurch earthquake of 22 February 2011 a number of researchers were sent to Christchurch, New Zealand to document the damage to masonry buildings as part of “Project Masonry”. Coordinated by the Universities of Auckland and Adelaide, researchers came from Australia, New Zealand, Canada, Italy, Portugal and the US. The types of masonry investigated were unreinforced clay brick masonry, unreinforced stone masonry, reinforced concrete masonry, residential masonry veneer and churches; masonry infill was not part of this study. This paper focuses on the progress of the unreinforced masonry (URM) component of Project Masonry. To date the research team has completed raw data collection on over 600 URM buildings in the Christchurch area. The results from this study will be extremely relevant to Australian cities since URM buildings in New Zealand are similar to those in Australia.

Research papers, The University of Auckland Library

Micro - electro - mechanical system (MEMS) based accelerometers are now frequently used in many different parts of our day - to - day lives. It is also increasingly being used for structural testing applications. Researchers have had res ervation of using these devices as they are relatively untested, but now with the wider adoption, it provides a much cheaper and more versatile tool for structural engineering researchers. A number of damaged buildings in the Christchurch Central Business District (CBD) were instrumented with a number of low - cost MEMS accelerometers after the major Christchurch earthquakes. The accelerometers captured extremely high quality building response data as the buildings experienced thousands of aftershocks. This d ata set was amongst one of only a handful of data set s available around the world which provides building response data subjected to real ground motion. Furthermore, due to technological advances, a much larger than usual number of accelerometers has been deployed making the data set one of the most comprehensive available. This data set is utilised to extract modal parameters of the buildings. This paper summarises the operating requirements and preference for using such accelerometers for experimental mod al analysis. The challenges for adapting MEMS based devices for successful modal parameters identification are also discussed.

Research papers, The University of Auckland Library

Ingham and Biggs were in Christchurch during the M6.3, 22 February 2011 earthquake and Moon arrived the next day. They were enlisted by officials to provide rapid assessment of buildings within the Central Business District (CBD). In addition, they were asked to: 1) provide a rapid assessment of the numbers and types of buildings that had been damaged, and 2) identify indicator buildings that represent classes of structures that can be used to monitor changing conditions for each class following continuing aftershocks and subsequent damage. This paper explains how transect methodology was incorporated into the rapid damage assessment that was performed 48 hours after the earthquake. Approximately 300 buildings were assessed using exterior Level 1 reporting techniques. That data was used to draw conclusions on the condition of the entire CBD of approximately 4400 buildings. In the context of a disaster investigation, a transect involves traveling a selected path assessing the condition of the buildings and documenting the class of each building, and using the results in conjunction with prior knowledge relating to the overall population of buildings affected in the area of the study. Read More: http://ascelibrary.org/doi/abs/10.1061/9780784412640.033

Research papers, The University of Auckland Library

The performance of retrofitted unreinforced masonry (URM) bearing wall buildings in Christchurch is examined, considering ground motion recordings from multiple events. Suggestions for how the experiences in Christchurch might be relevant to retrofit practices common to New Zealand, U.S. and Canada are also provided. Whilst the poor performance of unretrofitted URM buildings in earthquakes is well known, much less is known about how retrofitted URM buildings perform when subjected to strong ground shaking.

Research papers, The University of Auckland Library

This paper shows an understanding of the availability of resources in post-disaster reconstruction and recovery in Christchurch, New Zealand following its September 4, 2010 and February 22, 2011 earthquakes. Overseas experience in recovery demonstrates how delays and additional costs may incur if the availability of resources is not aligned with the reconstruction needs. In the case of reconstruction following Christchurch earthquakes, access to normal resource levels will be insufficient. An on-line questionnaire survey, combined with in-depth interviews was used to collect data from the construction professionals that had been participated in the post-earthquake reconstruction. The study identified the resources that are subject to short supply and resourcing challenges that are currently faced by the construction industry. There was a varied degree of impacts felt by the surveyed organisations from resource shortages. Resource pressures were primarily concentrated on human resources associated with structural, architectural and land issues. The challenges that may continue playing out in the longer-term reconstruction of Christchurch include limited capacity of the construction industry, competition for skills among residential, infrastructure and commercial sectors, and uncertainties with respect to decision making. Findings provide implications informing the ongoing recovery and rebuild in New Zealand. http://www.iiirr.ucalgary.ca/Conference-2012

Research papers, The University of Auckland Library

Utility managers are always looking for appropriate tools to estimate seismic damage in wastewater networks located in earthquake prone areas. Fragility curves, as an appropriate tool, are recommended for seismic vulnerability analysis of buried pipelines, including pressurised and unpressurised networks. Fragility curves are developed in pressurised networks mainly for water networks. Fragility curves are also recommended for seismic analysis in unpressurised networks. Applying fragility curves in unpressurised networks affects accuracy of seismic damage estimation. This study shows limitations of these curves in unpressurised networks. Multiple case study analysis was applied to demonstrate the limitations of the application of fragility curves in unpressurised networks in New Zealand. Four wastewater networks within New Zealand were selected as case studies and various fragility curves used for seismic damage estimation. Observed damage in unpressurised networks after the 2007 earthquake in Gisborne and the 2010 earthquake in Christchurch demonstrate the appropriateness of the applied fragility curves to New Zealand wastewater networks. This study shows that the application of fragility curves, which are developed from pressurised networks, cannot be accurately used for seismic damage assessment in unpressurised wastewater networks. This study demonstrated the effects of different parameters on seismic damage vulnerability of unpressurised networks.

Research papers, The University of Auckland Library

Test results are presented for wall-diaphragm plate anchor connections that were axially loaded to rupture. These connection samples were extracted post-earthquake by sorting through the demolition debris from unreinforced masonry (URM) buildings damaged in the Christchurch earthquakes. Unfortunately the number of samples available for testing was small due to the difficulties associated with sample collection in an environment of continuing aftershocks and extensive demolition activity, when personal safety combined with commercial activity involving large demolition machinery were imperatives that inhibited more extensive sample collection for research purposes. Nevertheless, the presented data is expected to be of assistance to structural engineers undertaking seismic assessment of URM buildings that have existing wall-diaphragm anchor plate connections installed, where it may be necessary to estimate the capacity of the existing connection as an important parameter linked with determining the current seismic capacity of the building and therefore influencing the decision regarding whether supplementary connections should be installed.

Research papers, The University of Auckland Library

The 2010/2011 Canterbury earthquakes have provided a unique opportunity to investigate the seismic performance of both traditional and modern buildings constructed in New Zealand. It is critical that the observed performance is examined and compared against the expected levels of performance that are outlined by the Building Code and Design Standards. In particular, in recent years there has been a significant amount of research into the seismic behaviour of precast concrete floor systems and the robustness of the support connections as a building deforms during an earthquake. An investigation of precast concrete floor systems in Christchurch has been undertaken to assess both the performance of traditional and current design practice. The observed performance for each type of precast floor unit was collated from a number of post-earthquake recognisance activities and compared against the expected performance determined for previous experimental testing and analysis. Possible reasons for both the observed damage, and in some cases the lack of damage, were identified. This critical review of precast concrete floor systems will assist in determining the success of current design practice as well as identify any areas that require further research and/or changes to design standards.

Research papers, The University of Auckland Library

As part of the ‘Project Masonry’ Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. Also, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake. In addition to presenting a summary of Project Masonry, the broader research activity at the University of Auckland pertaining to the seismic assessment and improvement of unreinforced masonry buildings is outlined. The purpose of this outline is to provide an overview and bibliography of published literature and to communicate on-going research activity that has not yet been reported in a complete form. http://sesoc.org.nz/conference/programme.pdf

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.

Research papers, University of Canterbury Library

Since September 2010 Christchurch, New Zealand, has experienced a number of significant earthquakes. In addition to loss of life, this has resulted in significant destruction to infrastructure, including road corridors; and buildings, especially in the central city, where it has been estimated that 60% of buildings will need to be rebuilt. The rebuild and renewal of Christchurch has initially focused on the central city under the direction of the Christchurch City Council. This has seen the development of a draft Central City Plan that includes a number of initiatives that should encourage the use of the bicycle as a mode of transport. The rebuild and renewal of the remainder of the city is under the jurisdiction of a specially set up authority, the Christchurch Earthquake Recovery Authority (CERA). CERA reports to an appointed Minister for Canterbury Earthquake Recovery, who is responsible for coordinating the planning, spending, and actual rebuilding work needed for the recovery. Their plans for the renewal and rebuild of the remainder of the city are not yet known. This presentation will examine the potential role of the bicycle as a mode of transport in a rebuilt Christchurch. The presentation will start by describing the nature of damage to Christchurch as a result of the 2010 and 2011 earthquakes. It will then review the Central City Plan (the plan for the rebuild and renewal for central Christchurch) focusing particularly on those aspects that affect the role of the bicycle. The potential for the success of this plan will be assessed. It will specifically reflect on this in light of some recent research in Christchurch that examined the importance of getting infrastructure right if an aim of transport planning is to attract new people to cycle for utilitarian reasons.

Research papers, University of Canterbury Library

Depending on their nature and severity, disasters can create large volumes of debris and waste. Waste volumes from a single event can be the equivalent of many times the annual waste generation rate of the affected community. These volumes can overwhelm existing solid waste management facilities and personnel. Mismanagement of disaster waste can affect both the response and long term recovery of a disaster affected area. Previous research into disaster waste management has been either context specific or event specific, making it difficult to transfer lessons from one disaster event to another. The aim of this research is to develop a systems understanding of disaster waste management and in turn develop context- and disaster-transferrable decision-making guidance for emergency and waste managers. To research this complex and multi-disciplinary problem, a multi-hazard, multi-context, multi-case study approach was adopted. The research focussed on five major disaster events: 2011 Christchurch earthquake, 2009 Victorian Bushfires, 2009 Samoan tsunami, 2009 L’Aquila earthquake and 2005 Hurricane Katrina. The first stage of the analysis involved the development of a set of ‘disaster & disaster waste’ impact indicators. The indicators demonstrate a method by which disaster managers, planners and researchers can simplify the very large spectra of possible disaster impacts, into some key decision-drivers which will likely influence post-disaster management requirements. The second stage of the research was to develop a set of criteria to represent the desirable environmental, economic, social and recovery effects of a successful disaster waste management system. These criteria were used to assess the effectiveness of the disaster waste management approaches for the case studies. The third stage of the research was the cross-case analysis. Six main elements of disaster waste management systems were identified and analysed. These were: strategic management, funding mechanisms, operational management, environmental and human health risk management, and legislation and regulation. Within each of these system elements, key decision-making guidance (linked to the ‘disaster & disaster waste’ indicators) and management principles were developed. The ‘disaster & disaster waste’ impact indicators, the effects assessment criteria and management principles have all been developed so that they can be practically applied to disaster waste management planning and response in the future.

Research papers, University of Canterbury Library

Following exposure to trauma, stress reactions are initially adaptive. However, some individuals’ psychological response can become maladaptive with long-lasting impairment to functioning. Most people with initial symptoms of stress recover, and thus it is important to distinguish individuals who are at risk of continuing difficulties so that resources are allocated appropriately. Investigations of predictors of PTSD development have largely focused on relational and combat-related trauma, with very limited research looking at natural disasters. This study assessed the nature and severity of psychological difficulties experienced in 101 people seeking treatment following exposure to a significant earthquake that killed 185 people. Peritraumatic dissociation, posttraumatic stress symptoms, symptoms of anxiety, symptoms of depression, and social isolation were assessed. Descriptive analyses revealed the sample to be a highly impaired group, with particularly high levels of posttraumatic stress symptoms. Path analysis was used to determine whether the experience of some psychological difficulties predicted experience of others. As hypothesised, peritraumatic dissociation was found to predict posttraumatic stress symptoms and symptoms of anxiety. Posttraumatic stress symptoms then predicted symptoms of anxiety and symptoms of depression. Depression and anxiety were highly correlated. Contrary to expectations, social isolation was not significantly related to any other psychological variables. These findings justify the provision of psychological support following a natural disaster and suggest the benefit of assessing peritraumatic dissociation and posttraumatic stress symptoms soon after the event to identify people in need of monitoring and intervention.

Research papers, University of Canterbury Library

Small, tight-knit communities, are complex to manage from outside during a disaster. The township of Lyttelton, New Zealand, and the communities of Corsair Bay, Cass Bay, and Rapaki to the east, are especially more so difficult due to the terrain that encloses them, which caused them to be cut-off from Christchurch, the largest city in the South Island, barely 10 km away, after the Mw 7.1 Darfield Earthquake and subsequent Canterbury Earthquake Sequence. Lyttelton has a very strong and deep-rooted community spirit that draws people to want to be a part of Lyttelton life. It is predominantly residential on the slopes, with retail space, service and light industry nestled near the harbour. It has heritage buildings stretching back to the very foundation of Canterbury yet hosts the largest, modern deep-water port for the region. This study contains two surveys: one circulated shortly before the Darfield Earthquake and one circulated in July 2011, after the Christchurch and Sumner Earthquakes. An analytical comparison of the participants’ household preparedness for disaster before the Darfield Earthquake and after the Christchurch and Sumner Earthquakes was performed. A population spatiotemporal distribution map was produced that shows the population in three-hourly increments over a week to inform exposure to vulnerability to natural hazards. The study went on to analyse the responses of the participants in the immediate period following the Chrsitchurch and Sumner Earthquakes, including their homeward and subsequent journeys, and the decision to evacuate or stay in their homes. Possible predictors to a decision to evacuate some or all members of the household were tested. The study also asked participants’ views on the events since September 2010 for analysis.

Research papers, University of Canterbury Library

The 22nd February 2011, Mw 6.3 Christchurch earthquake in New Zealand caused major damage to critical infrastructure, including the healthcare system. The Natural Hazard Platform of NZ funded a short-term project called “Hospital Functions and Services” to support the Canterbury District Health Board’s (CDHB) efforts in capturing standardized data that describe the effects of the earthquake on the Canterbury region’s main hospital system. The project utilised a survey tool originally developed by researchers at Johns Hopkins University (JHU) to assess the loss of function of hospitals in the Maule and Bío-Bío regions following the 27th February 2010, Mw 8.8 Maule earthquake in Chile. This paper describes the application of the JHU tool for surveying the impact of Christchurch earthquake on the CDHB Hospital System, including the system’s residual capacity to deliver emergency response and health care. A short summary of the impact of the Christchurch earthquake on other CDHB public and private hospitals is also provided. This study demonstrates that, as was observed in other earthquakes around the world, the effects of damage to non-structural building components, equipment, utility lifelines, and transportation were far more disruptive than the minor structural damage observed in buildings (FEMA 2007). Earthquake related complications with re-supply and other organizational aspects also impacted the emergency response and the healthcare facilities’ residual capacity to deliver services in the short and long terms.