Search

found 9 results

Research papers, The University of Auckland Library

This exhibition, eight years in the planning, had the misfortune to open one week before the 22 February 2011 Christchurch earthquake; the exhibition was immediately taken down and never went up again – the Christchurch Art Gallery has still not reopened. Although in my book Fantastica: The World of Leo Bensemann (NRO1) I covered the whole of Bensemann’s career, in the exhibition I took responsibility for the paintings (portraits and landscapes) , while Dr. Noel Waite (University of Otago) looked after Bensemann’s graphic work, book design and printing. This was the most extensive exhibition of Bensemann’s work ever mounted and together with Fantastica will compel a major reassessment of his place in New Zealand culture. Art New Zealand wrote of it: ‘The exhibition (including more than 100 items) is significant in bringing together what has in the past appeared disparate and unrelated; here Bensemann's entire oeuvre - the output of a painter, illustrator, calligrapher, typographer, designer and publisher is given equal billing. Although this exhibition is an important re-assessment and valuable for a new generation unfamiliar with his work, a national touring show would have precipitated an even greater awareness’.

Research papers, The University of Auckland Library

Five years on since the first major earthquake struck the Canterbury region, the reconstruction is well advanced. Christchurch is a city in transition. This report considers trends in resourcing and employment practice of Canterbury construction organisations in response to the projected market changes (2015-2016). The report draws on the interviews with 18 personnel from 16 construction organisations and recovery agencies in October 2015. It provides a summary of perceived changes in the construction market in Canterbury, evidence of what steps construction businesses have been taking, how they have prepared for likely changes in the reconstruction sector, as well as the perceived alignment of public policies with the industry response.

Research papers, The University of Auckland Library

This report provides an understanding of the nature of Canterbury subcontracting businesses operating in the space of earthquake reconstruction in Christchurch. It offers an in-depth look at the factors that influence the development of their capacity and capability to withstand the impact of volatile economic cycles, including the 2008 global financial crisis and the subsequent 2010/11 Canterbury earthquakes. There have been significant changes to the business models of the 13 subcontracting businesses studied since the earthquakes. These changes can be seen in the ways the case study subcontractors have adapted to cope with the changing demands that the rebuild posed. Apart from the magnitude of reconstruction works and new developments that directly affect the capacity of subcontracting businesses in Canterbury, case studies found that subcontractors’ capacity and capability to meet the demand varies and is influenced by the: subcontractors’ own unique characteristics, which are often shaped by changing circumstances in a dynamic and uncertain recovery process; and internal factors in relation to the company’s goal and employees’ needs

Research papers, University of Canterbury Library

This research investigates the validation of simulated ground motions on complex structural systems. In this study, the seismic responses of two buildings are compared when they are subjected to as-recorded ground motions and simulated ones. The buildings have been designed based on New Zealand codes and physically constructed in Christchurch, New Zealand. The recorded ground motions are selected from 40 stations database of the historical 22 Feb. 2011 Christchurch earthquake. The Graves and Pitarka (2015) methodology is used to generate the simulated ground motions. The geometric mean of maximum inter-story drift and peak floor acceleration are selected as the main seismic responses. Also, the variation of these parameters due to record to record variability are investigated. Moreover, statistical hypothesis testing is used to investigate the similarity of results between observed and simulated ground motions. The results indicate a general agreement between the peak floor acceleration calculated by simulated and recorded ground motions for two buildings. While according to the hypothesis tests result, the difference in drift can be significant for the building with a shorter period. The results will help engineers and researchers to use or revise the procedure by using simulated ground motions for obtaining seismic responses.

Research papers, University of Canterbury Library

The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.

Research papers, The University of Auckland Library

The 2010–2011 Canterbury earthquakes, which involved widespread damage during the February 2011 event and ongoing aftershocks near the Christchurch Central Business District, left this community with more than $NZD 40 billion in losses (~20 % GDP), demolition of approximately 60 % of multi-storey concrete buildings (3 storeys and up), and closure of the core business district for over 2 years. The aftermath of the earthquake sequence has revealed unique issues and complexities for the owners of commercial and multi-storey residential buildings in relation to unexpected technical, legal, and financial challenges when making decisions regarding the future of their buildings impacted by the earthquakes. The paper presents a framework to understand the factors influencing post-earthquake decisions (repair or demolish) on multi-storey concrete buildings in Christchurch. The study, conducted in 2014, includes in-depth investigations on 15 case-study buildings using 27 semi-structured interviews with various property owners, property managers, insurers, engineers, and government authorities in New Zealand. The interviews revealed insights regarding the multitude of factors influencing post-earthquake decisions and losses. As expected, the level of damage and repairability (cost to repair) generally dictated the course of action. There is strong evidence, however, that other variables have significantly influenced the decision on a number of buildings, such as insurance, business strategies, perception of risks, building regulations (and compliance costs), and government decisions. The decision-making process for each building is complex and unique, not solely driven by structural damage. Furthermore, the findings have put the spotlight on insurance policy wordings and the paradoxical effect of insurance on the recovery of Christchurch, leading to other challenges and issues going forward.

Research papers, University of Canterbury Library

Six months after the 4 September 2010 Mw 7.1 Darfield (Canterbury) earthquake, a Mw 6.2 Christchurch (Lyttelton) aftershock struck Christchurch on the 22 February 2011. This earthquake was centred approximately 10km south-east of the Christchurch CBD at a shallow depth of 5km, resulting in intense seismic shaking within the Christchurch central business district (CBD). Unlike the 4 Sept earthquake when limited-to-moderate damage was observed in engineered reinforced concrete (RC) buildings [35], in the 22 February event a high number of RC Buildings in the Christchurch CBD (16.2 % out of 833) were severely damaged. There were 182 fatalities, 135 of which were the unfortunate consequences of the complete collapse of two mid-rise RC buildings. This paper describes immediate observations of damage to RC buildings in the 22 February 2011 Christchurch earthquake. Some preliminary lessons are highlighted and discussed in light of the observed performance of the RC building stock. Damage statistics and typical damage patterns are presented for various configurations and lateral resisting systems. Data was collated predominantly from first-hand post-earthquake reconnaissance observations by the authors, complemented with detailed assessment of the structural drawings of critical buildings and the observed behaviour. Overall, the 22 February 2011 Mw 6.2 Christchurch earthquake was a particularly severe test for both modern seismically-designed and existing non-ductile RC buildings. The sequence of earthquakes since the 4 Sept 2010, particularly the 22 Feb event has confirmed old lessons and brought to life new critical ones, highlighting some urgent action required to remedy structural deficiencies in both existing and “modern” buildings. Given the major social and economic impact of the earthquakes to a country with strong seismic engineering tradition, no doubt some aspects of the seismic design will be improved based on the lessons from Christchurch. The bar needs to and can be raised, starting with a strong endorsement of new damage-resisting, whilst cost-efficient, technologies as well as the strict enforcement, including financial incentives, of active policies for the seismic retrofit of existing buildings at a national scale.

Research papers, The University of Auckland Library

Whole document is available to authenticated members of The University of Auckland until Feb. 2014. The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are often reluctant to adopt mitigation measures required to reduce earthquake losses. The magnitude of building collapses from the recent Christchurch earthquakes in New Zealand shows that owners of earthquake prone buildings (EPBs) are not adopting appropriate risk mitigation measures in their buildings. Owners of EPBs are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to seismic risks. This research investigates how to increase the likelihood of building owners undertaking appropriate mitigation actions that will reduce their vulnerability to earthquake disaster. A sequential two-phase mixed methods approach was adopted for the research investigation. Multiple case studies approach was adopted in the first qualitative phase, followed by the second quantitative research phase that includes the development and testing of a framework. The research findings reveal four categories of critical obstacles to building owners‘ decision to adopt earthquake loss prevention measures. These obstacles include perception, sociological, economic and institutional impediments. Intrinsic and extrinsic interventions are proposed as incentives for overcoming these barriers. The intrinsic motivators include using information communication networks such as mass media, policy entrepreneurs and community engagement in risk mitigation. Extrinsic motivators comprise the use of four groups of incentives namely; financial, regulatory, technological and property market incentives. These intrinsic and extrinsic interventions are essential for enhancing property owners‘ decisions to voluntarily adopt appropriate earthquake mitigation measures. The study concludes by providing specific recommendations that earthquake risk mitigation managers, city councils and stakeholders involved in risk mitigation in New Zealand and other seismic risk vulnerable countries could consider in earthquake risk management. Local authorities could adopt the framework developed in this study to demonstrate a combination of incentives and motivators that yield best-valued outcomes. Consequently, actions can be more specific and outcomes more effective. The implementation of these recommendations could offer greater reasons for the stakeholders and public to invest in building New Zealand‘s built environment resilience to earthquake disasters.