Search

found 46 results

Research papers, The University of Auckland Library

Recent earthquakes have shown that liquefaction and associated ground deformations are major geotechnical hazards to civil engineering infrastructures, such as pipelines. In particular, sewer pipes have been damaged in many areas in Christchurch as a result of liquefaction-induced lateral spreading near waterways and ground oscillation induced by seismic shaking. In this paper, the addition of a flexible AM liner as a potential countermeasure to increase sewer pipe capacity was investigated. Physical testing through 4-point loading test was undertaken to characterise material properties and the response of both unlined pipe and its lined counterpart. Next, numerical models were created using SAP2000 and ABAQUS to analyse buried pipeline response to transverse permanent ground displacement and to quantify, over a range of pipe segment lengths and soil parameters, the effectiveness of the AM liner in increasing displacement capacity. The numerical results suggest that the addition of the AM liner increases the deformation capacity of the unlined sewer pipe by as much as 50 times. The results confirmed that AM liner is an effective countermeasure for sewer pipes in liquefied ground not only in terms of increased deformation capacity but also the fact that AM-Liner can prevent influx of sand and water through broken pipes, making sewer pipes with liner remaining serviceable even under severe liquefaction condition.

Research papers, The University of Auckland Library

Following the devastating 1931 Hawke's Bay earthquake, buildings in Napier and surrounding areas in the Hawke's Bay region were rebuilt in a comparatively homogenous structural and architectural style comprising the region's famous Art Deco stock. These interwar buildings are most often composed of reinforced concrete two-way space frames, and although they have comparatively ductile detailing for their date of construction, are often expected to be brittle, earthquake-prone buildings in preliminary seismic assessments. Furthermore, the likelihood of global collapse of an RC building during a design-level earthquake became an issue warranting particular attention following the collapse of multiple RC buildings in the February 22, 2011 Christchurch earthquake. Those who value the architectural heritage and future use of these iconic Art Deco buildings - including building owners, tenants, and city officials, among others - must consider how they can be best preserved and utilized functionally given the especially pressing implications of relevant safety, regulatory, and economic factors. This study was intended to provide information on the seismic hazard, geometric weaknesses, collapse hazards, material properties, structural detailing, empirically based vulnerability, and recommended analysis approaches particular to Art Deco buildings in Hawke's Bay as a resource for professional structural engineers tasked with seismic assessments and retrofit designs for these buildings. The observed satisfactory performance of similar low-rise, ostensibly brittle RC buildings in other earthquakes and the examination of the structural redundancy and expected column drift capacities in these buildings, led to the conclusion that the seismic capacity of these buildings is generally underrated in simple, force-based assessments.

Research papers, The University of Auckland Library

As part of a seismic retrofit scheme, surface bonded glass fiber-reinforced polymer (GFRP) fabric was applied to two unreinforced masonry (URM) buildings located in Christchurch, New Zealand. The unreinforced stone masonry of Christchurch Girls’ High School (GHS) and the unreinforced clay brick masonry Shirley Community Centre were retrofitted using surface bonded GFRP in 2007 and 2009, respectively. Much of the knowledge on the seismic performance of GFRP retrofitted URM was previously assimilated from laboratory-based experimental studies with controlled environments and loading schemes. The 2010/2011 Canterbury earthquake sequence provided a rare opportunity to evaluate the GFRP retrofit applied to two vintage URM buildings and to document its performance when subjected to actual design-level earthquake-induced shaking. Both GFRP retrofits were found to be successful in preserving architectural features within the buildings as well as maintaining the structural integrity of the URM walls. Successful seismic performance was based on comparisons made between the GFRP retrofitted GHS building and the adjacent nonretrofitted Boys’ High School building, as well as on a comparison between the GFRP retrofitted and nonretrofitted walls of the Shirley Community Centre building. Based on detailed postearthquake observations and investigations, the GFRP retrofitted URM walls in the subject buildings exhibited negligible to minor levels of damage without delamination, whereas significant damage was observed in comparable nonretrofitted URM walls. AM - Accepted Manuscript

Research papers, The University of Auckland Library

Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/

Research papers, The University of Auckland Library

Ingham and Biggs were in Christchurch during the M6.3, 22 February 2011 earthquake and Moon arrived the next day. They were enlisted by officials to provide rapid assessment of buildings within the Central Business District (CBD). In addition, they were asked to: 1) provide a rapid assessment of the numbers and types of buildings that had been damaged, and 2) identify indicator buildings that represent classes of structures that can be used to monitor changing conditions for each class following continuing aftershocks and subsequent damage. This paper explains how transect methodology was incorporated into the rapid damage assessment that was performed 48 hours after the earthquake. Approximately 300 buildings were assessed using exterior Level 1 reporting techniques. That data was used to draw conclusions on the condition of the entire CBD of approximately 4400 buildings. In the context of a disaster investigation, a transect involves traveling a selected path assessing the condition of the buildings and documenting the class of each building, and using the results in conjunction with prior knowledge relating to the overall population of buildings affected in the area of the study. Read More: http://ascelibrary.org/doi/abs/10.1061/9780784412640.033

Research papers, The University of Auckland Library

The performance of retrofitted unreinforced masonry (URM) bearing wall buildings in Christchurch is examined, considering ground motion recordings from multiple events. Suggestions for how the experiences in Christchurch might be relevant to retrofit practices common to New Zealand, U.S. and Canada are also provided. Whilst the poor performance of unretrofitted URM buildings in earthquakes is well known, much less is known about how retrofitted URM buildings perform when subjected to strong ground shaking.

Research papers, The University of Auckland Library

Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript

Research papers, The University of Auckland Library

Unreinforced masonry (URM) is a construction type that was commonly adopted in New Zealand between the 1880s and 1930s. URM construction is evidently vulnerable to high magnitude earthquakes, with the most recent New Zealand example being the 22 February 2011 Mw6.3 Christchurch earthquake. This earthquake caused significant damage to a majority of URM buildings in the Canterbury area and resulted in 185 fatalities. Many URM buildings still exist in various parts of New Zealand today, and due to their likely poor seismic performance, earthquake assessment and retrofit of the remaining URM building stock is necessary as these buildings have significant architectural heritage and occupy a significant proportion of the nation’s building stock. A collaborative research programme between the University of Auckland and Reid Construction Systems was conducted to investigate an economical yet effective solution for retrofitting New Zealand’s existing URM building stock. This solution adopts the shotcrete technique using an Engineered Cementitious Composite (ECC), which is a polyvinyl alcohol fibre reinforced mortar that exhibits strain hardening characteristics. Collaborations have been formed with a number of consulting structural engineers throughout New Zealand to develop innovative and cost effective retrofit solutions for a number of buildings. Two such case studies are presented in this paper. http://www.concrete2013.com.au/technical-program/

Research papers, University of Canterbury Library

Following the 22nd February 2011, Mw 6.2 earthquake located along a previously unknown fault beneath the Port Hills of Christchurch, surface cracking was identified in contour parallel locations within fill material at Quarry Road on the lower slopes of Mount Pleasant. GNS Science, in the role of advisor to the Christchurch City Council, concluded that these cracks were a part of a potential rotational mass movement (named zone 11A) within the fill and airfall loess material present. However, a lack of field evidence for slope instability and an absence of laboratory geotechnical data on which slope stability analysis was based, suggested this conclusion is potentially incorrect. It was hypothesised that ground cracking was in fact due to earthquake shaking, and not mass movement within the slope, thus forming the basis of this study. Three soil units were identified during surface and subsurface investigations at Quarry Road: fill derived from quarry operations in the adjacent St. Andrews Quarry (between 1893 and 1913), a buried topsoil, and underlying in-situ airfall loess. The fill material was identified by the presence of organic-rich topsoil “clods” that were irregular in both size (∼10 – 200 mm) and shape, with variable thicknesses of 1 – 10 m. Maximum thickness, as indicated by drill holes and geophysical survey lines, was identified below 6 Quarry Road and 7 The Brae where it is thought to infill a pre-existing gully formed in the underlying airfall loess. Bearing strength of the fill consistently exceeded 300 kPa ultimate below ∼500 mm depth. The buried topsoil was 200 – 300 mm thick, and normally displayed a lower bearing strength when encountered, but not below 300 kPa ultimate (3 – 11 blows per 100mm or ≥100 kPa allowable). In-situ airfall loess stood vertically in outcrop due to its characteristic high dry strength and also showed Scala penetrometer values of 6 – 20+ blows per 100 mm (450 – ≥1000 kPa ultimate). All soils were described as being moist to dry during subsurface investigations, with no groundwater table identified during any investigation into volcanic bedrock. In-situ moisture contents were established using bulk disturbed samples from hand augers and test pitting. Average moisture contents were low at 9% within the fill, 11 % within the buried topsoil, and 8% within the airfall loess: all were below the associated average plastic limit of 17, 15, and 16, respectively, determined during Atterberg limit analysis. Particle size distributions, identified using the sieve and pipette method, were similar between the three soil units with 11 – 20 % clay, 62 – 78 % silt, and 11 – 20 % fine sand. Using these results and the NZGS soil classification, the loess derived fill and in-situ airfall loess are termed SILT with some clay and sand, and the buried topsoil is SILT with minor clay and sand. Dispersivity of the units was found using the Emerson crumb test, which established that the fill can be non- to completely dispersive (score 0 – 4). The buried topsoil was always non-dispersive (score 0), and airfall loess completely dispersive (score 4). Values for cohesion (c) and internal friction angle (φ) of the three soil units were established using the direct shear box at field moisture contents. Results showed all soil units had high shear strengths at the moisture contents tested (c = 18 – 24 kPa and φ = 42 – 50°), with samples behaving in a brittle fashion. Moisture content was artificially increased to 16% within the buried topsoil, which reduced the shear strength (c = 10 kPa, φ = 18°) and allowed it to behave plastically. Observational information indicating stability at Quarry Road included: shallow, discontinuous, cracks that do not display vertical offset; no scarp features or compressional zones typical of landsliding; no tilted or deformed structures; no movement in inclinometers; no basal shear zone identified in logged core to 20 m depth; low field moisture contents; no groundwater table; and high soil strength using Scala penetrometers. Limit equilibrium analysis of the slope was conducted using Rocscience software Slide 5.0 to verify the slope stability identified by observational methods. Friction, cohesion, and density values determined during laboratory were input into the two slope models investigated. Results gave minimum static factor of safety values for translational (along buried topsoil) and rotational (in the fill) slides of 2.4 – 4.2. Sensitivity of the slope to reduced shear strength parameters was analysed using c = 10 kPa and φ = 18° for the translational buried topsoil plane, and a cohesion of 0 kPa within the fill for the rotational plane. The only situation that gave a factor of safety <1.0 was in nonengineered fill at 0.5 m depth. Pseudostatic analysis based on previous peak ground acceleration (PGA) values for the Canterbury Earthquake Sequence, and predicted PGAs for future Alpine Fault and Hope Fault earthquakes established minimum factor of safety values between 1.2 and 3.3. Yield acceleration PGAs were computed to be between 0.8g and 1.6g. Based on all information gathered, the cracking at Quarry Road is considered to be shallow deformation in response to earthquake shaking, and not due to deep-seated landsliding. It is recommended that the currently bare site be managed by smoothing the land, installing contour drainage, and bioremediation of the surface soils to reduce surface water infiltration and runoff. Extensive earthworks, including removal of the fill, are considered unnecessary. Any future replacement of housing would be subject to site-specific investigations, and careful foundation design based on those results.

Research papers, University of Canterbury Library

The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.

Research papers, University of Canterbury Library

This poster presents preliminary results of ongoing experimental campaigns at the Universities of Auckland and Canterbury, aiming at investigating the seismic residual capacity of damaged reinforced concrete plastic hinges, as well as the effectiveness of epoxy injection techniques for restoring their stiffness, energy dissipation, and deformation capacity characteristics. This work is part of wider research project which started in 2012 at the University of Canterbury entitled “Residual Capacity and Repairing Options for Reinforced Concrete Buildings”, funded by the Natural Hazards Research Platform (NHRP). This research project aims at gaining a better understanding and providing the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information and practical guidelines to assess the residual capacity of damaged reinforced concrete buildings, as well as to evaluate the feasibility of repairing and thus support their delicate decision-making process of repair vs. demolition or replacement.

Research papers, The University of Auckland Library

Test results are presented for wall-diaphragm plate anchor connections that were axially loaded to rupture. These connection samples were extracted post-earthquake by sorting through the demolition debris from unreinforced masonry (URM) buildings damaged in the Christchurch earthquakes. Unfortunately the number of samples available for testing was small due to the difficulties associated with sample collection in an environment of continuing aftershocks and extensive demolition activity, when personal safety combined with commercial activity involving large demolition machinery were imperatives that inhibited more extensive sample collection for research purposes. Nevertheless, the presented data is expected to be of assistance to structural engineers undertaking seismic assessment of URM buildings that have existing wall-diaphragm anchor plate connections installed, where it may be necessary to estimate the capacity of the existing connection as an important parameter linked with determining the current seismic capacity of the building and therefore influencing the decision regarding whether supplementary connections should be installed.

Research papers, The University of Auckland Library

In the aftermath of the 2010-2011 Canterbury earthquakes in New Zealand, the residual capacity and reparability of damaged reinforced concrete (RC) structures was an issue pertinent to building owners, insurers, and structural engineers. Three precast RC moment-resisting frame specimens were extracted during the demolition of the Clarendon Tower in Christchurch after sustaining earthquake damage. These specimens were subjected to quasi-static cyclic testing as part of a research program to determine the reparability of the building. It was concluded that the precast RC frames were able to be repaired and retrofitted to an enhanced strength capacity with no observed reduction in displacement capacity, although the frames with “shear-ductile” detailing exhibited less displacement ductility capacity and energy dissipation capacity than the more conventionally detailed RC frames. Furthermore, the cyclic test results from the earthquake-damaged RC frames were used to verify the predicted inelastic demands applied to the specimens during the 2010-2011 Canterbury earthquakes. https://www.concrete.org/publications/acistructuraljournal.aspx

Research papers, University of Canterbury Library

There is an increasing recognition that the seismic performance of buildings will be affected by the behaviour of both structural and non-structural elements. In light of this, work has been progressing at the University of Canterbury to develop guidelines for the seismic assessment of commercial glazing systems. This paper reviews the seismic assessment guidelines prescribed in Section C10 of the MBIE building assessment guidelines. Subsequently, the C10 approach is used to assess the drift capacity of a number of glazing units recently tested at the University of Canterbury. Comparing the predicted and observed drift capacities, it would appear that the C10 guidelines may lead to nonconservative estimates of drift capacity. Furthermore, the experimental results indicate that watertightness may be lost at very low drift demands, suggesting that guidance for the assessment of serviceability performance would also be beneficial. As such, it is proposed that improved guidance be provided to assist engineers in considering the possible impact that glazing could have on the structural response of a building in a large earthquake.

Research papers, Victoria University of Wellington

This paper begins with a discussion of the history of negligent manslaughter in New Zealand and its development from the standard of ordinary negligence to the current test of a “major departure” from the expected standard of care, as set out under s 150A of the Crimes Act 1961. The paper then examines failings in s 150A’s current application, arguing that the “major departure” test has created injustices due to its strictly objective nature. Two examples of this are discussed in-depth, Bawa-Garba v R (UK) where a doctor was convicted of grossly negligent manslaughter for the death of her patient; and the decision not to prosecute the negligent engineers of the CTV building which collapsed in the Christchurch earthquake of 2011. The paper discusses three potential resolutions moving forward. It concludes that a more subjective interpretation of the wording of s 150A, which takes account of circumstances excusing or condemning a defendant’s conduct, would prevent future injustices and be a reasonably open interpretation on the wording of s 150A.

Research papers, University of Canterbury Library

In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.

Research papers, University of Canterbury Library

This research investigates the validation of simulated ground motions on complex structural systems. In this study, the seismic responses of two buildings are compared when they are subjected to as-recorded ground motions and simulated ones. The buildings have been designed based on New Zealand codes and physically constructed in Christchurch, New Zealand. The recorded ground motions are selected from 40 stations database of the historical 22 Feb. 2011 Christchurch earthquake. The Graves and Pitarka (2015) methodology is used to generate the simulated ground motions. The geometric mean of maximum inter-story drift and peak floor acceleration are selected as the main seismic responses. Also, the variation of these parameters due to record to record variability are investigated. Moreover, statistical hypothesis testing is used to investigate the similarity of results between observed and simulated ground motions. The results indicate a general agreement between the peak floor acceleration calculated by simulated and recorded ground motions for two buildings. While according to the hypothesis tests result, the difference in drift can be significant for the building with a shorter period. The results will help engineers and researchers to use or revise the procedure by using simulated ground motions for obtaining seismic responses.

Research papers, University of Canterbury Library

Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.

Research papers, University of Canterbury Library

One of the failure modes that got the attention of researchers in the 2011 February New Zealand earthquake was the collapse of a key supporting structural wall of Grand Chancellor Hotel in Christchurch which failed in a brittle manner. However, until now this failure mode has been still a bit of a mystery for the researchers in the field of structural engineering. Moreover, there is no method to identify, assess and design the walls prone to such failure mode. Following the recent break through regarding the mechanism of this failure mode based on experimental observations (out-of-plane shear failure), a numerical model that can capture this failure was developed using the FE software DIANA. A comprehensive numerical parametric study was conducted to identify the key parameters contributing to the development of out-of-plane shear failure in reinforced concrete (RC) walls. Based on the earthquake observations, experimental and numerical studies conducted by the authors of this paper, an analytical method to identify walls prone to out-of-plane shear failure that can be used in practice by engineers is proposed. The method is developed based on the key parameters affecting the seismic performance of RC walls prone to out-of-plane shear failure and can be used for both design and assessment purposes

Research papers, The University of Auckland Library

The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.

Research papers, University of Canterbury Library

This thesis addresses the topic of local bond behaviour in RC structures. The mechanism of bond refers to the composite action between deformed steel reinforcing bars and the surrounding concrete. Bond behaviour is an open research topic with a wide scope, particularly because bond it is such a fundamental concept to structural engineers. However, despite many bond-related research findings having wide applications, the primary contribution of this research is an experimental evaluation of the prominent features of local bond behaviour and the associated implications for the seismic performance of RC structures. The findings presented in this thesis attempt to address some structural engineering recommendations made by the Canterbury Earthquakes Royal Commission following the 2010-2011 Canterbury (New Zealand) earthquake sequence. A chapter of this thesis discusses the structural behaviour of flexure-dominated RC wall structures with an insufficient quantity of longitudinal reinforcement, among other in situ conditions, that causes material damage to predominantly occur at a single crack plane. In this particular case, the extent of concrete damage and bond deterioration adjacent to the crack plane will influence the ductility capacity that is effectively provided by the reinforcing steel. As a consequence of these in situ conditions, some lightly reinforced wall buildings in Christchurch lost their structural integrity due to brittle fracture of the longitudinal reinforcement. With these concerning post-earthquake observations in mind, there is the underlying intention that this thesis presents experimental evidence of bond behaviour that allows structural engineers to re-assess their confidence levels for the ability of lightly reinforced concrete structures to achieve the life-safety seismic performance objective the ultimate limit state. Three chapters of this thesis are devoted to the experimental work that was conducted as the main contribution of this research. Critical details of the experimental design, bond testing method and test programme are reported. The bond stress-slip relationship was studied through 75 bond pull-out tests. In order to measure the maximum local bond strength, all bond tests were carried out on deformed reinforcing bars that did not yield as the embedded bond length was relatively short. Bond test results have been presented in two separate chapters in which 48 monotonic bond tests and 27 cyclic bond tests are presented. Permutations of the experiments include the loading rate, cyclic loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and position of the embedded bond region within the specimen (close or far away to the free surface). The parametric study showed that the concrete strength significantly influences the maximum bond strength and that it is reasonable to normalise the bond stress by the square-root of the concrete compressive strength, √(f'c). The generalised monotonic bond behaviour is described within. An important outcome of the research is that the measured bond strength and stiffness was higher than stated by the bond stress-slip relationship in the fib Model Code 2010. To account for these observed differences, an alternative model is proposed for the local monotonic bond stress-slip relationship. Cyclic bond tests showed a significant proportion of the total bond degradation occurs after the loading cycle in the peak bond strength range, which is when bond slip has exceeded 0.5 mm. Subsequent loading to constant slip values showed a linear relationship between the amount of bond strength degradation and the log of the number of cycles that were applied. To a greater extent, the cyclic bond deterioration depends on the bond slip range, regardless of whether the applied load cycling is half- or fully-reversed. The observed bond deterioration and hysteretic energy dissipated during cyclic loading was found to agree reasonably well between these cyclic tests with different loading protocols. The cyclic bond deterioration was also found to be reasonably consistent exponential damage models found in the literature. This research concluded that the deformed reinforcing bars used in NZ construction, embedded in moderate to high strength concrete, are able to develop high local bond stresses that are mobilised by a small amount of local bond slip. Although the relative rib geometry was not varied within this experimental programme, a general conclusion of this thesis is that deformed bars currently available in NZ have a relative rib bearing area that is comparatively higher than the test bars used in previous international research. From the parametric study it was found that the maximum monotonic bond strength is significant enhanced by dynamic loading rates. Experimental evidence of high bond strength and initial bond stiffness generally suggests that only a small amount of local bond slip that can occur when the deformed test bar was subjected to large tension forces. Minimal bond slip and bond damage limits the effective yielding length that is available for the reinforcing steel to distribute inelastic material strains. Consequently, the potential for brittle fracture of the reinforcement may be a more problematic and widespread issue than is apparent to structural engineers. This research has provided information that improve the reliability of engineering predictions (with respect to ductility capacity) of maximum crack widths and the extent of bond deterioration that might occur in RC structures during seismic actions.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage occurred to unreinforced masonry buildings throughout the region during the mainshock and subsequent large aftershocks. Particularly extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, a geotechnical reconnaissance was conducted over a period of six days (10–15 September 2010) by a team of geotechnical/earthquake engineers and geologists from New Zealand and USA (GEER team: Geo-engineering Extreme Event Reconnaissance). JGS (Japanese Geotechnical Society) members from Japan also participated in the reconnaissance team from 13 to 15 September 2010. The NZ, GEER and JGS members worked as one team and shared resources, information and logistics in order to conduct thorough and most efficient reconnaissance covering a large area over a very limited time period. This report summarises the key evidence and findings from the reconnaissance.

Research papers, University of Canterbury Library

The 2010-2011 Christchurch earthquakes generated damage in several Reinforced Concrete (RC) buildings, which had RC walls as the principal resistant element against earthquake demand. Despite the agreement between structural engineers and researchers in an overall successfully performance there was a lack of knowledge about the behaviour of the damaged structures, and even deeper about a repaired structure, which triggers arguments between different parties that remains up to these days. Then, it is necessary to understand the capacity of the buildings after the earthquake and see how simple repairs techniques improve the building performance. This study will assess the residual capacity of ductile slender RC walls according to current standards in New Zealand, NZS 3101.1 2006 A3. First, a Repaired RC walls Database is created trying to gather previous studies and to evaluate them with existing international guidelines. Then, an archetype building is designed, and the wall is extracted and scaled. Four half-scale walls were designed and will be constructed and tested at the Structures Testing Laboratory at The University of Auckland. The overall dimensions are 3 [m] height, 2 [m] length and 0.175 [m] thick. All four walls will be identical, with differences in the loading protocol and the presence or absence of a repair technique. Results are going to be useful to assess the residual capacity of a damaged wall compare to the original behaviour and also the repaired capacity of walls with simpler repair techniques. The expected behaviour is focussed on big changes in stiffness, more evident than in previously tested RC beams found in the literature.

Research papers, The University of Auckland Library

The 2010–2011 Canterbury earthquakes, which involved widespread damage during the February 2011 event and ongoing aftershocks near the Christchurch Central Business District, left this community with more than $NZD 40 billion in losses (~20 % GDP), demolition of approximately 60 % of multi-storey concrete buildings (3 storeys and up), and closure of the core business district for over 2 years. The aftermath of the earthquake sequence has revealed unique issues and complexities for the owners of commercial and multi-storey residential buildings in relation to unexpected technical, legal, and financial challenges when making decisions regarding the future of their buildings impacted by the earthquakes. The paper presents a framework to understand the factors influencing post-earthquake decisions (repair or demolish) on multi-storey concrete buildings in Christchurch. The study, conducted in 2014, includes in-depth investigations on 15 case-study buildings using 27 semi-structured interviews with various property owners, property managers, insurers, engineers, and government authorities in New Zealand. The interviews revealed insights regarding the multitude of factors influencing post-earthquake decisions and losses. As expected, the level of damage and repairability (cost to repair) generally dictated the course of action. There is strong evidence, however, that other variables have significantly influenced the decision on a number of buildings, such as insurance, business strategies, perception of risks, building regulations (and compliance costs), and government decisions. The decision-making process for each building is complex and unique, not solely driven by structural damage. Furthermore, the findings have put the spotlight on insurance policy wordings and the paradoxical effect of insurance on the recovery of Christchurch, leading to other challenges and issues going forward.

Research papers, University of Canterbury Library

An extensive research program is on-going at the University of Canterbury, New Zealand to develop new technologies to permit the construction of multi-storey timber buildings in earthquake prone areas. The system combines engineered timber beams, columns and walls with ductile moment resisting connections using post-tensioned tendons and eventually energy dissipaters. The extensive experimental testing on post-tensioned timber building systems has proved a remarkable lateral response of the proposed solutions. A wide number of post-tensioned timber subassemblies, including beam-column connections, single or coupled walls and column-foundation connections, have been analysed in static or quasi-static tests. This contribution presents the results of the first dynamic tests carried out with a shake-table. Model frame buildings (3-storey and 5-storey) on one-quarter scale were tested on the shake-table to quantify the response of post-tensioned timber frames during real-time earthquake loading. Equivalent viscous damping values were computed for post-tensioned timber frames in order to properly predict their response using numerical models. The dynamic tests were then complemented with quasi-static push and pull tests performed to a 3-storey post-tensioned timber frame. Numerical models were included to compare empirical estimations versus dynamic and quasi-static experimental results. Different techniques to model the dynamic behaviour of post-tensioned timber frames were explored. A sensitivity analysis of alternative damping models and an examination of the influence of designer choices for the post-tensioning force and utilization of column armouring were made. The design procedure for post-tensioned timber frames was summarized and it was applied to two examples. Inter-storey drift, base shear and overturning moments were compared between numerical modelling and predicted/targeted design values.

Research papers, University of Canterbury Library

After a high-intensity seismic event, inspections of structural damages need to be carried out as soon as possible in order to optimize the emergency management, as well as improving the recovery time. In the current practice, damage inspections are performed by an experienced engineer, who physically inspect the structures. This way of doing not only requires a significant amount of time and high skilled human resources, but also raises the concern about the inspector’s safety. A promising alternative is represented using new technologies, such as drones and artificial intelligence, which can perform part of the damage classification task. In fact, drones can safely access high hazard components of the structures: for instance, bridge piers or abutments, and perform the reconnaissance by using highresolution cameras. Furthermore, images can be automatically processed by machine learning algorithms, and damages detected. In this paper, the possibility of applying such technologies for inspecting New Zealand bridges is explored. Firstly, a machine-learning model for damage detection by performing image analysis is presented. Specifically, the algorithm was trained to recognize cracks in concrete members. A sensitivity analysis was carried out to evaluate the algorithm accuracy by using database images. Depending on the confidence level desired,i.e. by allowing a manual classification where the alghortim confidence is below a specific tolerance, the accuracy was found reaching up to 84.7%. In the second part, the model is applied to detect the damage observed on the Anzac Bridge (GPS coordinates -43.500865, 172.701138) in Christchurch by performing a drone reconnaissance. Reults show that the accuracy of the damage detection was equal to 88% and 63% for cracking and spalling, respectively.

Research papers, University of Canterbury Library

Beam-column joints are addressed in the context of current design procedures and performance criteria for reinforced concrete ductile frames subjected to large earthquake motions. Attention is drawn to the significant differences between the pertinent requirements of concrete design codes of New Zealand and the United States for such joints. The difference between codes stimulated researchers and structural engineers of the United States, New Zealand, Japan and China to undertake an international collaborative research project. The major investigators of the project selected issues and set guidelines for co-ordinated testing of joint specimens designed according to the codes of the countries. The tests conducted at the University of Canterbury, New Zealand, are reported. Three full-scale beam-column-slab joint assemblies were designed according to existing code requirements of NZS 3101:1982, representing an interior joint of a one-way frame, an interior joint of a two-way frame, and an exterior joint of a two-way frame. Quasistatic cyclic loading simulating severe earthquake actions was applied. The overall performance of each test assembly was found to be satisfactory in terms of stiffness, strength and ductility. The joint and column remained essentially undamaged while plastic hinges formed in the beams. The weak beam-strong column behaviour sought in the design, desirable in tall ductile frames designed for earthquake resistance, was therefore achieved. Using the laws of statics and test observations, the action and flow of forces from the slabs, beams and column to the joint cores are explored. The effects of bond performance and the seismic shear resistance of the joints, based on some postulated mechanisms, are examined. Implications of the test results on code specifications are discussed and design recomendations are made.

Research papers, University of Canterbury Library

Designing a structure for higher- than-code seismic performance can result in significant economic and environmental benefits. This higher performance can be achieved using the principles of Performance-Based Design, in which engineers design structures to minimize the probabilistic lifecycle seismic impacts on a building. Although the concept of Performance-Based Design is not particularly new, the initial capital costs associated with designing structures for higher performance have historically hindered the widespread adoption of performance-based design practices. To overcome this roadblock, this research is focused on providing policy makers and stakeholders with evidence-based environmental incentives for designing structures in New Zealand for higher seismic performance. In the first phase of the research, the environmental impacts of demolitions in Christchurch following the Canterbury Earthquakes were quantified to demonstrate the environmental consequences of demolitions following seismic events. That is the focus here. A building data set consisting of 142 concrete buildings that were demolished following the earthquake was used to quantify the environmental impacts of the demolitions in terms of the embodied carbon and energy in the building materials. A reduced set of buildings was used to develop a material takeoff model to estimate material quantities in the entire building set, and a lifecycle assessment tool was used to calculate the embodied carbon and energy in the materials. The results revealed staggering impacts in terms of the embodied carbon and energy in the materials in the demolished buildings. Ongoing work is focused developing an environmental impact framework that incorporates all the complex factors (e.g. construction methodologies, repair methodologies (if applicable), demolition methodologies (if applicable), and waste management) that contribute to the environmental impacts of building repair and demolition following earthquakes.

Research papers, The University of Auckland Library

New Zealand’s stock of unreinforced masonry (URM) bearing wall buildings was principally constructed between 1880 and 1935, using fired clay bricks and lime or cement mortar. These buildings are particularly vulnerable to horizontal loadings such as those induced by seismic accelerations, due to a lack of tensile force-resisting elements in their construction. The poor seismic performance of URM buildings was recently demonstrated in the 2011 Christchurch earthquake, where a large number of URM buildings suffered irreparable damage and resulted in a significant number of fatalities and casualties. One of the predominant failure modes that occurs in URM buildings is diagonal shear cracking of masonry piers. This diagonal cracking is caused by earthquake loading orientated parallel to the wall surface and typically generates an “X” shaped crack pattern due to the reversed cyclic nature of earthquake accelerations. Engineered Cementitious Composite (ECC) is a class of fiber reinforced cement composite that exhibits a strain-hardening characteristic when loaded in tension. The tensile characteristics of ECC make it an ideal material for seismic strengthening of clay brick unreinforced masonry walls. Testing was conducted on 25 clay brick URM wallettes to investigate the increase in shear strength for a range of ECC thicknesses applied to the masonry wallettes as externally bonded shotcrete reinforcement. The results indicated that there is a diminishing return between thickness of the applied ECC overlay and the shear strength increase obtained. It was also shown that, the effectiveness of the externally bonded reinforcement remained constant for one and two leaf wallettes, but decreased rapidly for wall thicknesses greater than two leafs. The average pseudo-ductility of the strengthened wallettes was equal to 220% of that of the as-built wallettes, demonstrating that ECC shotcrete is effective at enhancing both the in-plane strength and the pseudo-ductility of URM wallettes. AM - Accepted Manuscript