The paper proposes a simple method for quick post-earthquake assessment of damage and condition of a stock of bridges in a transportation network using seismic data recorded by a strong motion array. The first part of the paper is concerned with using existing free field strong motion recorders to predict peak ground acceleration (PGA) at an arbitrary bridge site. Two methods are developed using artificial neural networks (a single network and a committee of neural networks) considering influential parameters, such as seismic magnitude, hypocentral depth and epicentral distance. The efficiency of the proposed method is explored using actual strong motion records from the devastating 2010 Darfield and 2011 Christchurch earthquakes in New Zealand. In the second part, two simple ideas are outlined how to infer the likely damage to a bridge using either the predicted PGA and seismic design spectrum, or a broader set of seismic metrics, structural parameters and damage indices.
Tsunami events including the 2004 Indian Ocean Tsunami and the 2011 Tohoku Earthquake and Tsunami confirmed the need for Pacific-wide comprehensive risk mitigation and effective tsunami evacuation planning. New Zealand is highly exposed to tsunamis and continues to invest in tsunami risk awareness, readiness and response across the emergency management and science sectors. Evacuation is a vital risk reduction strategy for preventing tsunami casualties. Understanding how people respond to warnings and natural cues is an important element to improving evacuation modelling techniques. The relative rarity of tsunami events locally in Canterbury and also globally, means there is limited knowledge on tsunami evacuation behaviour, and tsunami evacuation planning has been largely informed by hurricane evacuations. This research aims to address this gap by analysing evacuation behaviour and movements of Kaikōura and Southshore/New Brighton (coastal suburb of Christchurch) residents following the 2016 Kaikōura earthquake. Stage 1 of the research is engaging with both these communities and relevant hazard management agencies, using a survey and community workshops to understand real-event evacuation behaviour during the 2016 Kaikōura earthquake and subsequent tsunami evacuations. The second stage is using the findings from stage 1 to inform an agent-based tsunami evacuation model, which is an approach that simulates of the movement of people during an evacuation response. This method improves on other evacuation modelling approaches to estimate evacuation times due to better representation of local population characteristics. The information provided by the communities will inform rules and interactions such as traffic congestion, evacuation delay times and routes taken to develop realistic tsunami evacuation models. This will allow emergency managers to more effectively prepare communities for future tsunami events, and will highlight recommended actions to increase the safety and efficiency of future tsunami evacuations.