Search

found 15 results

Research papers, The University of Auckland Library

This thesis investigates life-safety risk in earthquakes. The first component of the thesis utilises a dataset of earthquake injuries and deaths from recent earthquakes in New Zealand to identify cause, context, and risk factors of injury and death in the 2011 MW6.3 Christchurch earthquake and 2016 MW7.8 Kaikōura earthquake. Results show that nearly all deaths occurred from being hit by structural elements from buildings, while most injuries were caused by falls, strains and being hit by contents or non-structural elements. Statistical analysis of injured cases compared to an uninjured control group found that age, gender, building damage, shaking intensity, and behaviour during shaking were the most significant risk factors for injury during these earthquakes. The second part of the thesis uses the empirical findings from the first section to develop two tools for managing life-safety risk in earthquakes. The first tool is a casualty estimation model for health system and emergency response planning. An existing casualty model used in New Zealand was validated against observed data from the 2011 Christchurch earthquake and found to underestimate moderate and severe injuries by an order of magnitude. The model was then updated to include human behaviour such as protective actions, falls and strain type injuries that are dependent on shaking intensity, as well as injuries and deaths outside buildings. These improvements resulted in a closer fit to observed casualties for the 2011 Christchurch earthquake. The second tool that was developed is a framework to set seismic loading standards for design based on fatality risk targets. The proposed framework extends the risk-targeted hazard method, by moving beyond collapse risk targets, to fatality risk targets for individuals in buildings and societal risk in cities. The framework also includes treatment of epistemic uncertainty in seismic hazard to allow this uncertainty to be used in risk-based decision making. The framework is demonstrated by showing how the current New Zealand loading standards could be revised to achieve uniform life-safety risk across the country and how the introduction of a new loading factor can reduce risk aggregation in cities. Not on Alma, moved and emailed. 1/02/2023 ce

Research papers, University of Canterbury Library

At 4.35am on Saturday 4 September 2010, a magnitude 7.1 earthquake struck near the township of Darfield in Canterbury leading to widespread damage in Christchurch and the wider central Canterbury region. Though it was reported no lives were lost, that was not entirely correct. Over 3,000 animals perished as a result of the earthquake and 99% of these deaths would have been avoidable if appropriate mitigation measures had been in place. Deaths were predominantly due to zoological vulnerability of birds in captive production farms. Other problems included lack of provision of animal welfare at evacuation centres, issues associated with multiple lost and found pet services, evacuation failure due to pet separation and stress impact on dairy herds and associated milk production. The Canterbury Earthquake has highlighted concerns over a lack of animal emergency welfare planning and capacity in New Zealand, an issue that is being progressed by the National Animal Welfare Emergency Management Group. As animal emergency management becomes better understood by emergency management and veterinary professionals, it is more likely that both sectors will have greater demands placed upon them by national guidelines and community expectations to ensure provisions are made to afford protection of animals in times of disaster. A subsequent and more devastating earthquake struck the region on Monday 22 February 2011; this article however is primarily focused on the events pertaining to the September 4 event.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Unreinforced masonry buildings also suffered extensive damage throughout the region. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. This paper summarizes the observations and preliminary findings from this early reconnaissance work.

Research papers, Victoria University of Wellington

This paper begins with a discussion of the history of negligent manslaughter in New Zealand and its development from the standard of ordinary negligence to the current test of a “major departure” from the expected standard of care, as set out under s 150A of the Crimes Act 1961. The paper then examines failings in s 150A’s current application, arguing that the “major departure” test has created injustices due to its strictly objective nature. Two examples of this are discussed in-depth, Bawa-Garba v R (UK) where a doctor was convicted of grossly negligent manslaughter for the death of her patient; and the decision not to prosecute the negligent engineers of the CTV building which collapsed in the Christchurch earthquake of 2011. The paper discusses three potential resolutions moving forward. It concludes that a more subjective interpretation of the wording of s 150A, which takes account of circumstances excusing or condemning a defendant’s conduct, would prevent future injustices and be a reasonably open interpretation on the wording of s 150A.

Research papers, The University of Auckland Library

This thesis describes the strategies for earthquake strengthening vintage clay bricks unreinforced masonry (URM) buildings. URM buildings are well known to be vulnerable to damage from earthquake-induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent destructive natural disaster that resulted in the deaths of 185 people. The earthquake events had drawn people’s attention when URM failure and collapse caused about 39 of the fatality. Despite the poor performance of URM buildings during the 2010/2011 Canterbury earthquakes, a number of successful case study buildings were identified and their details research in-depth. In order to discover the successful seismic retrofitting techniques, two case studies of retrofitted historical buildings located in Christchurch, New Zealand i.e. Orion’s URM substations and an iconic Heritage Hotel (aka Old Government Building) was conducted by investigating and evaluating the earthquake performance of the seismic retrofitting technique applied on the buildings prior to the 2010/2011 Canterbury earthquakes and their performance after the earthquakes sequence. The second part of the research reported in this thesis was directed with the primary aim of developing a cost-effective seismic retrofitting technique with minimal interference to the vintage clay-bricks URM buildings. Two retrofitting techniques, (i) near-surface mounted steel wire rope (NSM-SWR) with further investigation on URM wallettes to get deeper understanding the URM in-plane behaviour, and (ii) FRP anchor are reported in this research thesis.

Research papers, University of Canterbury Library

The University of Canterbury is known internationally for the Origins of New Zealand English (ONZE) corpus (see Gordon et al 2004). ONZE is a large collection of recordings from people born between 1851 and 1984, and it has been widely utilised for linguistic and sociolinguistic research on New Zealand English. The ONZE data is varied. The recordings from the Mobile Unit (MU) are interviews and were collected by members of the NZ Broadcasting service shortly after the Second World War, with the aim of recording stories from New Zealanders outside the main city centres. These were supplemented by interview recordings carried out mainly in the 1990s and now contained in the Intermediate Archive (IA). The final ONZE collection, the Canterbury Corpus, is a set of interviews and word-list recordings carried out by students at the University of Canterbury. Across the ONZE corpora, there are different interviewers, different interview styles and a myriad of different topics discussed. In this paper, we introduce a new corpus – the QuakeBox – where these contexts are much more consistent and comparable across speakers. The QuakeBox is a corpus which consists largely of audio and video recordings of monologues about the 2010-2011 Canterbury earthquakes. As such, it represents Canterbury speakers’ very recent ‘danger of death’ experiences (see Labov 2013). In this paper, we outline the creation and structure of the corpus, including the practical issues involved in storing the data and gaining speakers’ informed consent for their audio and video data to be included.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage occurred to unreinforced masonry buildings throughout the region during the mainshock and subsequent large aftershocks. Particularly extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, a geotechnical reconnaissance was conducted over a period of six days (10–15 September 2010) by a team of geotechnical/earthquake engineers and geologists from New Zealand and USA (GEER team: Geo-engineering Extreme Event Reconnaissance). JGS (Japanese Geotechnical Society) members from Japan also participated in the reconnaissance team from 13 to 15 September 2010. The NZ, GEER and JGS members worked as one team and shared resources, information and logistics in order to conduct thorough and most efficient reconnaissance covering a large area over a very limited time period. This report summarises the key evidence and findings from the reconnaissance.

Research papers, University of Canterbury Library

The combination of music and disaster has been the subject of much study, especially starstudded telethons and songs that commemorate tragedy. However, there are many other ways that music can be used after disaster that provide benefits far greater than money or memorials but are not necessarily as prominent in the worldwide media landscape. Beginning in September 2010, the city of Christchurch, New Zealand, has been struck by several major earthquakes and over 11,000 aftershocks, the most destructive of which caused 185 deaths. As with many other disasters, music has been used as a method of fundraising and commemoration, but personal experience suggests many other ways that music can be used as a coping mechanism and aid to personal and community recovery. Therefore, in order to uncover the connections, context, and strategies behind its use, this thesis addresses the question: Since the earthquakes began, how has popular music been beneficial for the city and people of Christchurch? As well as documenting a wide variety of musical ‘earthquake relief’ events and charitable releases, this research also explores some of the more intangible aspects of the music-aid relationship. Two central themes are presented – fundraising and psychosocial uses – utilising individual voices and case studies to illustrate the benefits of music use after disaster at a community or city-wide level. Together the disparate threads and story fragments weave a detailed picture of the ways in which music as shared experience, as text, as commodity, and as a tool for memory and movement has been incorporated into the fabric of the city during the recovery phase.

Research papers, University of Canterbury Library

In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.

Research papers, University of Canterbury Library

On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).

Research papers, University of Canterbury Library

The 2010 and 2011 earthquakes in the region of Canterbury, New Zealand caused widespread damage and the deaths of 185 people. Suburbs on the eastern side of Christchurch and in the satellite town of Kaiapoi, 20 kilometres north of Christchurch, were badly damaged by liquefaction. The Canterbury Earthquake Recovery Authority (CERA), a government organisation set up in the wake of the earthquakes, began to systematically zone all residential land in 2011. Based on the possibility for land remediation, 7860 houses in Christchurch and Kaiapoi were zoned red. Those who were in this zone were compensated and had to buy or build elsewhere. The other zone examined within this research – that of TC3 – lies within the green zone. Residents, in this zone, were able to stay in their houses but land was moderately damaged and required site-specific geotechnical investigations. This research sought to understand how residents’ senses of home were impacted by a disaster and the response efforts. Focusing on the TC3 and red zone of the eastern suburbs and the satellite town of Kaiapoi, this study interviewed 29 residents within these zones. The concept of home was explored with the respondents at three scales: home as a household; home as a community; and home as a city. There was a large amount of resistance to the zoning process and the handling of claims by insurance companies and the Earthquake Commission (EQC) after the earthquakes. Lack of transparency and communication, as well as extremely slow timelines were all documented as failings of these agencies. This research seeks to understand how participant’s sense of home changed on an individual level and how it was impacted by outside agencies. Homemaking techniques were also focused on showing that a changed sense of home will impact on how a person interacts with a space.

Research papers, University of Canterbury Library

On 22 February 2011, Ōtautahi Christchurch was struck by a devastating earthquake. The city was changed forever: lives were lost, buildings destroyed and much of the city’s infrastructure needed to be repaired or replaced. One of the unexpected outcomes of the process of recovery was the volume of archaeological work that was carried out in the city, including the substantial amount of buildings archaeology that was undertaken (that is, recording standing buildings prior to and during their demolition, using archaeological techniques). Amongst the numerous buildings recorded in this way were 101 houses from across the city (but concentrated in those areas hit hardest by the earthquakes), built between 1850 and 1900. This work yielded a wealth of data about what houses in the city looked like in the nineteenth century. It is this data that forms the core of my thesis, providing an opportunity to examine the question of what life was like in nineteenth century Christchurch through these houses and the people who built them. Christchurch was founded in 1850 by European settlers, most of whom were English. These people came to New Zealand to build a better life for themselves and their families. For many of them, this ‘better life’ included the possibility of owning their own home and, in some instances, building that house (or at least, commissioning its construction). The buildings archaeology data collected following the Canterbury earthquakes enabled a detailed analysis of what houses in the city looked like in the nineteenth century – their form, and both their external and internal appearance – and how this changed as the century progressed. A detailed examination of the lives of those who built 21 of the houses enabled me to understand why each house looked the way it did, and how the interplay of class, budget and family size and expectations (amongst other factors) shaped each house. It is through these life stories that more about life in Christchurch in the nineteenth century was revealed. These are stories of men and women, of success and failure, of businesses and bankruptcies. There are themes that run through the stories: class, appearances, death, religion, gender, improvement. Just as importantly, though, they reveal the everyday experiences of people as they set about building a new city. Thus, through the archaeology of the houses and the history of the people who built them, an earthquake has revealed more about life in nineteenth century Christchurch, as well as providing the means for a deeper understanding of the city’s domestic architecture.

Research papers, University of Canterbury Library

INTRODUCTION: Connections between environmental factors and mental health issues have been postulated in many different countries around the world. Previously undertaken research has shown many possible connections between these fields, especially in relation to air quality and extreme weather events. However, research on this subject is lacking in New Zealand, which is difficult to analyse as an overall nation due to its many micro-climates and regional differences.OBJECTIVES: The aim of this study and subsequent analysis is to explore the associations between environmental factors and poor mental health outcomes in New Zealand by region and predict the number of people with mental health-related illnesses corresponding to the environmental influence.METHODS: Data are collected from various public-available sources, e.g., Stats NZ and Coronial services of New Zealand, which comprised four environmental factors of our interest and two mental health indicators data ranging from 2016 up until 2020. The four environmental factors are air pollution, earthquakes, rainfall and temperature. Two mental health indicators include the number of people seen by District Health Boards (DHBs) for mental health reasons and the statistics on suicide deaths. The initial analysis is carried out on which regions were most affected by the chosen environmental factors. Further analysis using Auto-Regressive Integrated Moving Average(ARIMA) creates a model based on time series of environmental data to generate estimation for the next two years and mental health projected from the ridge regression.RESULTS: In our initial analysis, the environmental data was graphed along with mental health outcomes in regional charts to identify possible associations. Different regions of New Zealand demonstrate quite different relationships between the environmental data and mental health outcomes. The result of later analysis predicts that the suicide rate and DHB mental health visits may increase in Wellington, drop-in Hawke's Bay and slightly increase in Canterbury for the year 2021 and 2022 with different environmental factors considered.CONCLUSION: It is evident that the relationship between environmental and mental health factors is regional and not national due to the many micro-climates that exist around the nation. However, it was observed that not all factors displayed a good relationship between the regions. We conclude that our hypotheses were partially correct, in that increased air pollution was found to correlate to increased mental health-related DHB visits. Rainfall was also highly correlated to some mental health outcomes. Higher levels of rainfall reduced DHB visits and suicide rates in some areas of the country.

Research papers, University of Canterbury Library

During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.

Research papers, University of Canterbury Library

Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.