Search

found 3 results

Research papers, University of Canterbury Library

Well-validated liquefaction constitutive models are increasingly important as non-linear time history analyses become relatively more common in industry for key projects. Previous validation efforts of PM4Sand, a plasticity model specifically for liquefaction, have generally focused on centrifuge tests; however, pore pressure transducers installed at several free-field sites during the Canterbury Earthquake Sequence (CES) in Christchurch, New Zealand provide a relatively unique dataset to validate against. This study presents effective stress site response analyses performed in the finite difference software FLAC to examine the capability of PM4Sand to capture the generation of excess pore pressures during earthquakes. The characterization of the subsurface is primarily based on extensive cone penetration tests (CPT) carried out in Christchurch. Correlations based on penetration resistances are used to estimate soil parameters, such as relative density and shear wave velocity, which affect liquefaction behaviour. The resulting free-field FLAC model is used to estimate time histories of excess pore pressure, which are compared with records during several earthquakes in the CES to assess the suitability of PM4Sand.

Research papers, University of Canterbury Library

Semi-empirical models based on in-situ geotechnical tests have become the standard of practice for predicting soil liquefaction. Since the inception of the “simplified” cyclic-stress model in 1971, variants based on various in-situ tests have been developed, including the Cone Penetration Test (CPT). More recently, prediction models based soley on remotely-sensed data were developed. Similar to systems that provide automated content on earthquake impacts, these “geospatial” models aim to predict liquefaction for rapid response and loss estimation using readily-available data. This data includes (i) common ground-motion intensity measures (e.g., PGA), which can either be provided in near-real-time following an earthquake, or predicted for a future event; and (ii) geospatial parameters derived from digital elevation models, which are used to infer characteristics of the subsurface relevent to liquefaction. However, the predictive capabilities of geospatial and geotechnical models have not been directly compared, which could elucidate techniques for improving the geospatial models, and which would provide a baseline for measuring improvements. Accordingly, this study assesses the realtive efficacy of liquefaction models based on geospatial vs. CPT data using 9,908 case-studies from the 2010-2016 Canterbury earthquakes. While the top-performing models are CPT-based, the geospatial models perform relatively well given their simplicity and low cost. Although further research is needed (e.g., to improve upon the performance of current models), the findings of this study suggest that geospatial models have the potential to provide valuable first-order predictions of liquefaction occurence and consequence. Towards this end, performance assessments of geospatial vs. geotechnical models are ongoing for more than 20 additional global earthquakes.

Research papers, The University of Auckland Library

The Screw Driving Sounding (SDS) method developed in Japan is a relatively new insitu testing technique to characterise soft shallow sites, typically those required for residential house construction. An SDS machine drills a rod into the ground in several loading steps while the rod is continuously rotated. Several parameters, such as torque, load and speed of penetration, are recorded at every rotation of the rod. The SDS method has been introduced in New Zealand, and the results of its application for characterising local sites are discussed in this study. A total of 164 SDS tests were conducted in Christchurch, Wellington and Auckland to validate/adjust the methodologies originally developed based on the Japanese practice. Most of the tests were conducted at sites where cone penetration tests (CPT), standard penetration tests (SPT) and borehole logs were available; the comparison of SDS results with existing information showed that the SDS method has great potential as an in-situ testing method for classifying the soils. By compiling the SDS data from 3 different cities and comparing them with the borehole logs, a soil classification chart was generated for identifying the soil type based on SDS parameters. Also, a correlation between fines content and SDS parameters was developed and a procedure for estimating angle of internal friction of sand using SDS parameters was investigated. Furthermore, a correlation was made between the tip resistance of the CPT and the SDS data for different percentages of fines content. The relationship between the SPT N value and a SDS parameter was also proposed. This thesis also presents a methodology for identifying the liquefiable layers of soil using SDS data. SDS tests were performed in both liquefied and non-liquefied areas in Christchurch to find a representative parameter and relationship for predicting the liquefaction potential of soil. Plots were drawn of the cyclic shear stress ratios (CSR) induced by the earthquakes and the corresponding energy of penetration during SDS tests. By identifying liquefied or unliquefied layers using three different popular CPT-based methods, boundary lines corresponding to the various probabilities of liquefaction happening were developed for different ranges of fines contents using logistic regression analysis, these could then be used for estimating the liquefaction potential of soil directly from the SDS data. Finally, the drilling process involved in screw driving sounding was simulated using Abaqus software. Analysis results proved that the model successfully captured the drilling process of the SDS machine in sand. In addition, a chart to predict peak friction angles of sandy sites based on measured SDS parameters for various vertical effective stresses was formulated. As a simple, fast and economical test, the SDS method can be a reliable alternative insitu test for soil and site characterisation, especially for residential house construction.