“much of what we know about leadership is today redundant because it is literally designed for a different operating model, a different context, a different time” (Pascale, Sternin, & Sternin, p. 4). This thesis describes a project that was designed with a focus on exploring ways to enhance leadership capacity in non-government organisations operating in Christchurch, New Zealand. It included 20 CEOs, directors and managers from organisations that cover a range of settings, including education, recreation, and residential and community therapeutic support; all working with adolescents. The project involved the creation of a peer-supported professional learning community that operated for 14 months; the design and facilitation of which was informed by the Appreciative Inquiry principles of positive focus and collaboration. At the completion of the research project in February 2010, the leaders decided to continue their collective processes as a self-managing and sustaining professional network that has grown and in 2014 is still flourishing under the title LYNGO (Leaders of Youth focussed NGOs). Two compelling findings emerged from this research project. The first of these relates to efficacy of a complexity thinking framework to inform the actions of these leaders. The leaders in this project described the complexity thinking framework as the most relevant, resonant and dynamic approach that they encountered throughout the research project. As such this thesis explores this complexity thinking informed leadership in detail as the leaders participating in this project believed it offers an opportune alternative to more traditional forms of positional leadership and organisational approaches. This exploration is more than simply a rationale for complexity thinking but an iterative in-depth exploration of ‘complexity leadership in action’ which in Chapter 6 elaborates on detailed leadership tools and frameworks for creating the conditions for self-organisation and emergence. The second compelling finding relates to efficacy of Appreciative Inquiry as an emergent research and development process for leadership learning. In particular the adoption of two key principles; positive focus and inclusivity were beneficial in guiding the responsive leadership learning process that resulted in a professional learning community that exhibited high engagement and sustainability. Additionally, the findings suggest that complexity thinking not only acts as a contemporary framework for adaptive leadership of organisations as stated above; but that complexity thinking has much to offer as a framework for understanding leadership development processes through the application of Appreciative Inquiry (AI)-based principles. A consideration of the components associated with complexity thinking has promise for innovation and creativity in the development of leaders and also in the creation of networks of learning. This thesis concludes by suggesting that leaders focus on creating hybrid organisations, ones which leverage the strengths (and minimise the limitations) of self-organising complexity-informed organisational processes, while at the same time retaining many of the strengths of more traditional organisational management structures. This approach is applied anecdotally to the place where this study was situated: the post-earthquake recovery of Christchurch, New Zealand.
The 2010 and 2011 earthquakes in the region of Canterbury, New Zealand caused widespread damage and the deaths of 185 people. Suburbs on the eastern side of Christchurch and in the satellite town of Kaiapoi, 20 kilometres north of Christchurch, were badly damaged by liquefaction. The Canterbury Earthquake Recovery Authority (CERA), a government organisation set up in the wake of the earthquakes, began to systematically zone all residential land in 2011. Based on the possibility for land remediation, 7860 houses in Christchurch and Kaiapoi were zoned red. Those who were in this zone were compensated and had to buy or build elsewhere. The other zone examined within this research – that of TC3 – lies within the green zone. Residents, in this zone, were able to stay in their houses but land was moderately damaged and required site-specific geotechnical investigations. This research sought to understand how residents’ senses of home were impacted by a disaster and the response efforts. Focusing on the TC3 and red zone of the eastern suburbs and the satellite town of Kaiapoi, this study interviewed 29 residents within these zones. The concept of home was explored with the respondents at three scales: home as a household; home as a community; and home as a city. There was a large amount of resistance to the zoning process and the handling of claims by insurance companies and the Earthquake Commission (EQC) after the earthquakes. Lack of transparency and communication, as well as extremely slow timelines were all documented as failings of these agencies. This research seeks to understand how participant’s sense of home changed on an individual level and how it was impacted by outside agencies. Homemaking techniques were also focused on showing that a changed sense of home will impact on how a person interacts with a space.
Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.