This study analyses the Earthquake Commission’s (EQC) insurance claims database to investigate the influence of seismic intensity and property damage resulting from the Canterbury Earthquake Sequence (CES) on the repair costs and claim settlement duration for residential buildings. Firstly, the ratio of building repair cost to its replacement cost was expressed as a Building Loss Ratio (BLR), which was further extended to Regional Loss Ratio (RLR) for greater Christchurch by multiplying the average of all building loss ratios with the proportion of building stock that lodged an insurance claim. Secondly, the total time required to settle the claim and the time taken to complete each phase of the claim settlement process were obtained. Based on the database, the regional loss ratio for greater Christchurch for three events producing shakings of intensities 6, 7, and 8 on the modified Mercalli intensity scale were 0.013, 0.066, and 0.171, respectively. Furthermore, small (less than NZD15,000), medium (between NZD15,000 and NZD100,000), and large (more than NZD100,000) claims took 0.35-0.55, 1.95-2.45, and 3.35-3.85 years to settle regardless of the building’s construction period and earthquake intensities. The number of claims was also disaggregated by various building characteristics to evaluate their relative contribution to the damage and repair costs.
The Canterbury Earthquake Sequence (CES), induced extensive damage in residential buildings and led to over NZ$40 billion in total economic losses. Due to the unique insurance setting in New Zealand, up to 80% of the financial losses were insured. Over the CES, the Earthquake Commission (EQC) received more than 412,000 insurance claims for residential buildings. The 4 September 2010 earthquake is the event for which most of the claims have been lodged with more than 138,000 residential claims for this event only. This research project uses EQC claim database to develop a seismic loss prediction model for residential buildings in Christchurch. It uses machine learning to create a procedure capable of highlighting critical features that affected the most buildings loss. A future study of those features enables the generation of insights that can be used by various stakeholders, for example, to better understand the influence of a structural system on the building loss or to select appropriate risk mitigation measures. Previous to the training of the machine learning model, the claim dataset was supplemented with additional data sourced from private and open access databases giving complementary information related to the building characteristics, seismic demand, liquefaction occurrence and soil conditions. This poster presents results of a machine learning model trained on a merged dataset using residential claims from the 4 September 2010.
In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.
We examine the role of business interruption insurance in business recovery following the Christchurch earthquake in 2011 in the short- and medium-term. In the short-term analysis, we ask whether insurance increases the likelihood of business survival in the aftermath of a disaster. We find only weak evidence that those firms that had incurred damage, but were covered by business interruption insurance, had higher likelihood of survival post-quake compared with those firms that did not have insurance. This absence of evidence may reflect the high degree of uncertainty in the months following the 2011 earthquake and the multiplicity of severe aftershocks. For the medium-term, our results show a more explicit role for insurance in the aftermath of a disaster. Firms with business interruption insurance have a higher probability of increasing productivity and improved performance following a catastrophe. Furthermore, our results show that those organisations that receive prompt and full payments of their claims have a better recovery, in terms of profitability and a subjective ‘”better off” measure’ than those that had protracted or inadequate claim payments (less than 80% of the claim paid within 2.5 years). Interestingly, the latter group does worse than those organisations that had damage but no insurance coverage. This analysis strongly indicates the importance not only of good insurance coverage, but of an insurance system that also delivers prompt claim payments. As a first paper attempting to empirically identify a causal effect of insurance on business recovery, we also emphasize some caveats to our analysis.
In September 2010 and February 2011 the Canterbury region of New Zealand was struck by two powerful earthquakes, registering magnitude 7.1 and 6.3 respectively on the Richter scale. The second earthquake was centred 10 kilometres south-east of the centre of Christchurch (the region’s capital and New Zealand’s third most populous urban area, with approximately 360,000 residents) at a depth of five kilometres. 185 people were killed, making it the second deadliest natural disaster in New Zealand’s history. (66 people were killed in the collapse of one building alone, the six-storey Canterbury Television building.) The earthquake occurred during the lunch hour, increasing the number of people killed on footpaths and in buses and cars by falling debris. In addition to the loss of life, the earthquake caused catastrophic damage to both land and buildings in Christchurch, particularly in the central business district. Many commercial and residential buildings collapsed in the tremors; others were damaged through soil liquefaction and surface flooding. Over 1,000 buildings in the central business district were eventually demolished because of safety concerns, and an estimated 70,000 people had to leave the city after the earthquakes because their homes were uninhabitable. The New Zealand Government declared a state of national emergency, which stayed in force for ten weeks. In 2014 the Government estimated that the rebuild process would cost NZ$40 billion (approximately US$27.3 billion, a cost equivalent to 17% of New Zealand’s annual GDP). Economists now estimate it could take the New Zealand economy between 50 and 100 years to recover. The earthquakes generated tens of thousands of insurance claims, both against private home insurance companies and against the New Zealand Earthquake Commission, a government-owned statutory body which provides primary natural disaster insurance to residential property owners in New Zealand. These ranged from claims for hundreds of millions of dollars concerning the local port and university to much smaller claims in respect of the thousands of residential homes damaged. Many of these insurance claims resulted in civil proceedings, caused by disputes about policy cover, the extent of the damage and the cost and/or methodology of repairs, as well as failures in communication and delays caused by the overwhelming number of claims. Disputes were complicated by the fact that the Earthquake Commission provides primary insurance cover up to a monetary cap, with any additional costs to be met by the property owner’s private insurer. Litigation funders and non-lawyer claims advocates who took a percentage of any insurance proceeds also soon became involved. These two factors increased the number of parties involved in any given claim and introduced further obstacles to resolution. Resolving these disputes both efficiently and fairly was (and remains) central to the rebuild process. This created an unprecedented challenge for the justice system in Christchurch (and New Zealand), exacerbated by the fact that the Christchurch High Court building was itself damaged in the earthquakes, with the Court having to relocate to temporary premises. (The High Court hears civil claims exceeding NZ$200,000 in value (approximately US$140,000) or those involving particularly complex issues. Most of the claims fell into this category.) This paper will examine the response of the Christchurch High Court to this extraordinary situation as a case study in innovative judging practices and from a jurisprudential perspective. In 2011, following the earthquakes, the High Court made a commitment that earthquake-related civil claims would be dealt with as swiftly as the Court's resources permitted. In May 2012, it commenced a special “Earthquake List” to manage these cases. The list (which is ongoing) seeks to streamline the trial process, resolve quickly claims with precedent value or involving acute personal hardship or large numbers of people, facilitate settlement and generally work proactively and innovatively with local lawyers, technical experts and other stakeholders. For example, the Court maintains a public list (in spreadsheet format, available online) with details of all active cases before the Court, listing the parties and their lawyers, summarising the facts and identifying the legal issues raised. It identifies cases in which issues of general importance have been or will be decided, with the expressed purpose being to assist earthquake litigants and those contemplating litigation and to facilitate communication among parties and lawyers. This paper will posit the Earthquake List as an attempt to implement innovative judging techniques to provide efficient yet just legal processes, and which can be examined from a variety of jurisprudential perspectives. One of these is as a case study in the well-established debate about the dialogic relationship between public decisions and private settlement in the rule of law. Drawing on the work of scholars such as Hazel Genn, Owen Fiss, David Luban, Carrie Menkel-Meadow and Judith Resnik, it will explore the tension between the need to develop the law through the doctrine of precedent and the need to resolve civil disputes fairly, affordably and expeditiously. It will also be informed by the presenter’s personal experience of the interplay between reported decisions and private settlement in post-earthquake Christchurch through her work mediating insurance disputes. From a methodological perspective, this research project itself gives rise to issues suitable for discussion at the Law and Society Annual Meeting. These include the challenges in empirical study of judges, working with data collected by the courts and statistical analysis of the legal process in reference to settlement. September 2015 marked the five-year anniversary of the first Christchurch earthquake. There remains widespread dissatisfaction amongst Christchurch residents with the ongoing delays in resolving claims, particularly insurers, and the rebuild process. There will continue to be challenges in Christchurch for years to come, both from as-yet unresolved claims but also because of the possibility of a new wave of claims arising from poor quality repairs. Thus, a final purpose of presenting this paper at the 2016 Meeting is to gain the benefit of other scholarly perspectives and experiences of innovative judging best practice, with a view to strengthening and improving the judicial processes in Christchurch. This Annual Meeting of the Law and Society Association in New Orleans is a particularly appropriate forum for this paper, given the recent ten year anniversary of Hurricane Katrina and the plenary session theme of “Natural and Unnatural Disasters – human crises and law’s response.” The presenter has a personal connection with this theme, as she was a Fulbright scholar from New Zealand at New York University in 2005/2006 and participated in the student volunteer cleanup effort in New Orleans following Katrina. http://www.lawandsociety.org/NewOrleans2016/docs/2016_Program.pdf
We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity measured from space, and investigate whether insurance claim payments for damaged residential property affected the local recovery process. We focus on the destructive Canterbury Earthquake Sequence (CES) 2010 -2011 as our case study. Uniquely for this event, more than 95% of residential housing units were covered by insurance, but insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery and describe the recovery’s determinants. We also find that insurance payments contributed significantly to the process of economic recovery after the earthquake, but delayed payments were less affective and cash settlement of claims were more effective than insurance-managed repairs in contributing to local recovery.
We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity measured from space, and investigate whether insurance claim payments for damaged residential property affected the local recovery process. We focus on the destructive Christchurch earthquake of 2011 as our case study. In this event more than 95% of residential housing units were covered by insurance, but insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery and describe the recovery’s determinants. We also find that insurance payments contributed significantly to the process of economic recovery after the earthquake, but delayed payments were less affective and cash settlement of claims were more affective in contributing to local recovery than insurance-managed rebuilding.
We examine the role of business interruption (BI) insurance in business recovery following the Christchurch earthquake in 2011. First, we ask whether BI insurance increases the likelihood of business survival in the immediate (3-6 months) aftermath of a disaster. We find positive but statistically insignificant evidence that those firms that had incurred damage, but were covered by BI insurance, had higher likelihood of survival post-quake compared with those firms that did not have any insurance. For the medium-term (2-3 years) survival of firms, our results show a more explicit role for insurance. Firms with BI insurance experience increased productivity and improved performance following a catastrophe. Furthermore, we find that those organisations that receive prompt and full payments of their claims have a better recovery than those that had protracted or inadequate claims payments, but this difference between the two groups is not statistically significant. We find no statistically significant evidence that the latter group (inadequate payment) did any better than those organisations that had damage but no insurance coverage. In general, our analysis indicates the importance not only of adequate insurance coverage, but also of an insurance system that delivers prompt claim payments.
This is a post-peer-review, pre-copyedit version of an article published in 'The Geneva Papers on Risk and Insurance - Issues and Practice'. The final authenticated version is available online at: https://doi.org/10.1057/s41288-017-0067-y. The following terms of use apply: https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use.
Insurance is widely acknowledged as a key component in an organisation's disaster preparedness and resilience. But how effective is insurance in aiding business recovery following a major disaster? The aim of this research was to summarise the experiences of both the insurance industry and businesses dealing with commercial insurance claims following the 2010 and 2011 Canterbury earthquakes.
The Canterbury earthquakes caused huge amounts of damage to Christchurch and the surrounding area and presented a very challenging situation for both insurers and claimants. While tourism has suffered significant losses as a result, particularly due to the subsequent decrease in visitor numbers, the Canterbury region was very fortunate to have high levels of insurance coverage. This report, based on data gathered from tourism operators on the ground in Canterbury, looks at how this sector has been affected by the quakes, claims patterns, and the behaviour and perceptions of tourism operators about insurance.
The Canterbury earthquakes of 2010 and 2011 generated hundreds of thousands of insurance claims, many of which were disputed. The New Zealand justice system faced the same challenge encountered by other jurisdictions following a natural disaster: how to resolve these disputes quickly and at minimal cost but also fairly, to avoid compounding the disaster with injustice? The thesis is of this article is that although the earthquakes were catastrophic for New Zealand, they also created a unique opportunity to design an innovative civil justice process—the Christchurch High Court Earthquake List—and to test, over a relatively short timeframe, how well that process works. This article describes the Christchurch High Court Earthquake List and analyses it by reference to civil justice theory about the relative normative values of public adjudication and private settlement and the dialogic relationship between them. It then evaluates the List, using statistics available five years on from the earthquakes and by reference to the author’s own experience mediating earthquake disputes.
Detailed studies on the sediment budget may reveal valuable insights into the successive build-up of the Canterbury Plains and their modification by Holocene fluvialaction connected to major braided rivers. Additionally, they bear implications beyond these fluvial aspects. Palaeoseismological studies claim to have detected signals of major Alpine Fault earthquakes in coastal environments along the eastern seaboard of the South Island (McFadgen and Goff, 2005). This requires high connectivity between the lower reaches of major braided rivers and their mountain catchments to generate immediate significant sediment pulses. It would be contradictory to the above mentioned hypothesis though. Obtaining better control on sediment budgets of braided rivers like the Waimakariri River will finally add significant value to multiple scientific and applied topics like regional resource management. An essential first step of sediment budget studies Is to systematically map the geomorphology, conventionally in the field and/or using remote-sensing applications, to localise, genetically identify, and classify landforms or entire toposequences of the area being investigated. In formerly glaciated mountain environments it is also indispensable to obtain all available chronological information supporting subsequent investigations.
An UnReinforced clay brick Masonry (URM) chimney is composed of a cantilever URM appendage above a roofline and is considered one of the most earthquake prone non-structural compo¬nents within vintage URM and timber-framed buildings. Observations from past earthquakes including the 1992 Big Bear City earthquake, 1994 Northridge earthquake, 2001 Nisqually earthquake, 2010/2011 Canterbury earthquakes, 2012 Northern Italy earthquakes, and 2014 South Napa earthquake served repeatedly as a reminder of the hazard induced by URM chimneys. The observed failure types included several cases where the adopted retrofit techniques were not adequate to effectively secure chimneys dur¬ing the earthquake. Data collected during the 2010/2011 post-earthquake building assessments in Christchurch and insur¬ance claims are reported herein. Five full-scale solid clay brick URM chimneys which replicated the most encountered geometrical and construction characteristics were subjected to shake table testing. Two chim¬ney samples were representative of the as-built conditions, while three samples were retrofitted using two different configurations of Near-Surface-Mounted (NSM) Carbon-Fibre-Reinforced-Polymer (CFRP) strips and post-tensioning techniques. The adopted securing techniques allowed an increase in seismic acceleration capacity of more than five times for chimneys constructed with ultra-weak mortar and more than twice for chimneys built with weak mortar. http://www.16ibmac.com/
Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility to movement during high-wind loading. The precursor to research in the field of isolation of residential buildings was the 1994 Northridge Earthquake (6.7 MW) in the United States and the 1995 Kobe Earthquake (6.9 MW) in Japan. While only a small number of lives were lost in residential buildings in these events, the economic impact was significant with over half of earthquake recovery costs given to repair and reconstruction of residential building damage. A value case has been explored to highlight the benefits of seismically isolated residential buildings compared to a standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used by researchers to determine vulnerability functions for the current light-frame wood building stock. By further considering the loss attributed to drift and acceleration sensitive components, and a simplified single degree of freedom (SDOF) building model, a method for determining vulnerability functions for seismic isolated buildings was developed. Vulnerability functions were then applied directly in a loss assessment using the GNS developed software, RiskScape. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building and as a result, the monetary savings in a given earthquake scenario were significant. This work is expected to drive further interest for development of solutions for the seismic isolation of residential dwellings, of which one option is further considered and presented herein.
This study analyses the success and limitations of the recovery process following the 2010–11 earthquake sequence in Christchurch, New Zealand. Data were obtained from in-depth interviews with 32 relocated households in Christchurch, and from a review of recovery policies implemented by the government. A top-down approach to disaster recovery was evident, with the creation of multiple government agencies and processes that made grassroots input into decision-making difficult. Although insurance proceeds enabled the repair and rebuilding of many dwellings, the complexity and adversarial nature of the claim procedures also impaired recovery. Householders’ perceptions of recovery reflected key aspects of their post-earthquake experiences (e.g. the housing offer they received, and the negotiations involved), and the outcomes of their relocation (including the value of the new home, their subjective well-being, and lifestyle after relocation). Protracted insurance negotiations, unfair offers and hardships in post-earthquake life were major challenges to recovery. Less-thanfavourable recovery experiences also transformed patterns of trust in local communities, as relocated householders came to doubt both the government and private insurance companies’ ability to successfully manage a disaster. At the same time, many relocated households expressed trust in their neighbours and communities. This study illuminates how government policies influence disaster recovery while also suggesting a need to reconsider centralised, top-down approaches to managing recovery.
Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility of light-weight buildings to movement under high-wind loading. The 1994 Northridge Earthquake (6.7 MW) in the United States, 1995 Kobe Earthquake (6.9 MW) in Japan and 2011 Christchurch Earthquake (6.7 Mw) all highlighted significant loss to light-frame wood buildings with over half of earthquake recovery costs allocated to their repair and reconstruction. This poster presents a value case to highlight the benefits of seismically isolated residential buildings compared to the standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used to determine vulnerability functions for the current light-frame wood building stock. By using a simplified single degree of freedom (SDOF) building model, methods for determining vulnerability functions for seismic isolated buildings are developed. Vulnerability functions are then applied directly in a loss assessment to determine the Expected Annual Loss. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building resulting in significant monetary savings, justifying the value case. A state-of-the-art timber modelling software, Timber3D, is then used to model a typical residential building with and without seismic isolation to assess the performance of a proposed seismic isolation system which addresses the technical and cost issues.
This is an ethnographic case study, tracking the course of arguments about the future of a city’s central iconic building, damaged following a major earthquake sequence. The thesis plots this as a social drama and examines the central discourses of the controversy. The focus of the drama is the Anglican neo-Gothic Christ Church Cathedral, which stands in the central square of Christchurch, New Zealand. A series of major earthquakes in 2010/2011 devastated much of the inner city, destroying many heritage-listed buildings. The Cathedral was severely damaged and was declared by Government officials in 2011 to be a dangerous building, which needed to be demolished. The owners are the Church Property Trustees, chaired by Bishop Victoria Matthews, a Canadian appointed in 2008. In March 2012 Matthews announced that the Cathedral, because of safety and economic factors, would be deconstructed. Important artefacts were to be salvaged and a new Cathedral built, incorporating the old and new. This decision provoked a major controversy, led by those who claimed that the building could and should be restored. Discourses of history and heritage, memory, place and identity, ownership, economics and power are all identified, along with the various actors, because of their significance. However, the thesis is primarily concerned with the differing meanings given to the Cathedral. The major argument centres on the symbolic interaction between material objects and human subjects and the various ways these are interpreted. At the end of the research period, December 2015, the Christ Church Cathedral stands as a deteriorating wreck, inhabited by pigeons and rats and shielded by protective, colourfully decorated wooden fences. The decision about its future remains unresolved at the time of writing.
This dissertation contains three essays on the impact of unexpected adverse events on student outcomes. All three attempt to identify causal inference using plausibly exogenous shocks and econometric tools, applied to rich administrative data. In Chapter 2, I present evidence of the causal effects of the 2011 Christchurch earthquake on tertiary enrolment and completion. Using the shock of the 2011 earthquake on high school students in the Canterbury region, I estimate the effect of the earthquake on a range of outcomes including tertiary enrolment, degree completion and wages. I find the earthquake causes a substantial increase in tertiary enrolment, particularly for low ability high school leavers from damaged schools. However, I find no evidence that low ability students induced by the earthquake complete a degree on time. In Chapter 3, I identify the impact of repeat disaster exposure on university performance, by comparing outcomes for students who experience their first earthquake while in university, to outcomes for students with prior earthquake exposure. Using a triple-differences estimation strategy with individual-by-year fixed effects, I identify a precise null effect, suggesting that previous experience of earthquakes is not predictive of response to an additional shock two years later. The final chapter investigates the impact of injuries sustained in university on academic performance and wages, using administrative data including no-fault insurance claims, emergency department attendance and hospital admissions, linked with tertiary enrolment. I find injuries, including minor injuries, have a negative effect on re-enrolment, degree completion and grades in university.
The 2010 and 2011 earthquakes in the region of Canterbury, New Zealand caused widespread damage and the deaths of 185 people. Suburbs on the eastern side of Christchurch and in the satellite town of Kaiapoi, 20 kilometres north of Christchurch, were badly damaged by liquefaction. The Canterbury Earthquake Recovery Authority (CERA), a government organisation set up in the wake of the earthquakes, began to systematically zone all residential land in 2011. Based on the possibility for land remediation, 7860 houses in Christchurch and Kaiapoi were zoned red. Those who were in this zone were compensated and had to buy or build elsewhere. The other zone examined within this research – that of TC3 – lies within the green zone. Residents, in this zone, were able to stay in their houses but land was moderately damaged and required site-specific geotechnical investigations. This research sought to understand how residents’ senses of home were impacted by a disaster and the response efforts. Focusing on the TC3 and red zone of the eastern suburbs and the satellite town of Kaiapoi, this study interviewed 29 residents within these zones. The concept of home was explored with the respondents at three scales: home as a household; home as a community; and home as a city. There was a large amount of resistance to the zoning process and the handling of claims by insurance companies and the Earthquake Commission (EQC) after the earthquakes. Lack of transparency and communication, as well as extremely slow timelines were all documented as failings of these agencies. This research seeks to understand how participant’s sense of home changed on an individual level and how it was impacted by outside agencies. Homemaking techniques were also focused on showing that a changed sense of home will impact on how a person interacts with a space.
Despite over a century of study, the relationship between lunar cycles and earthquakes remains controversial and difficult to quantitatively investigate. Perhaps as a consequence, major earthquakes around the globe are frequently followed by 'prediction' claims, using lunar cycles, that generate media furore and pressure scientists to provide resolute answers. The 2010-2011 Canterbury earthquakes in New Zealand were no exception; significant media attention was given to lunarderived earthquake predictions by non-scientists, even though the predictions were merely 'opinions' and were not based on any statistically robust temporal or causal relationships. This thesis provides a framework for studying lunisolar earthquake temporal relationships by developing replicable statistical methodology based on peer reviewed literature. Notable in the methodology is a high accuracy ephemeris, called ECLPSE, designed specifically by the author for use on earthquake catalogs, and a model for performing phase angle analysis. The statistical tests were carried out on two 'declustered' seismic catalogs, one containing the aftershocks from the Mw7.1 earthquake in Canterbury, and the other containing Australian seismicity from the past two decades. Australia is an intraplate setting far removed from active plate boundaries and Canterbury is proximal to a plate boundary, thus allowing for comparison based on tectonic regime and corresponding tectonic loading rate. No strong, conclusive, statistical correlations were found at any level of the earthquake catalogs, looking at large events, onshore events, offshore events, and the fault type of some events. This was concluded using Schuster's test of significance with α=5% and analysis of standard deviations. A few weak correlations, with p-5-10% of rejecting the null hypothesis, and anomalous standard deviations were found, but these are difficult to interpret. The results invalidate the statistical robustness of 'earthquake predictions' using lunisolar parameters in this instance. An ambitious researcher could improve on the quality of the results and on the range of parameters analyzed. The conclusions of the thesis raise more questions than answers, but the thesis provides an adaptable methodology that can be used to further investigation the problem.
The Canterbury earthquakes of 2010 and 2011 have shone the spotlight on a number of tax issues. These issues, and in particular lessons learned from them, will be relevant for revenue authorities, policymakers and taxpayers alike in the broader context of natural disasters. Issues considered by this paper include the tax treatment of insurance monies. For example, building owners will receive pay-outs for destroyed assets and buildings which have been depreciated. Where the insurance payment is more than the adjusted tax value, there will be a taxable "gain on sale" (or depreciation recovery income). If the building owner uses those insurance proceeds to purchase a replacement asset, legislative amendments specifically enacted following the earthquakes provide that rollover relief of the depreciation recovery income is available. The tax treatment of expenditure to seismically strengthen a building is another significant issue faced by building owners. Case law has determined that this expenditure will usually be capital expenditure. In the past such costs could be capitalised to the building and depreciated accordingly. However, since the 2011-2012 income year owners have been prohibited from claiming depreciation on buildings and therefore currently no deduction is available for such strengthening expenditure (whether immediate or deferred). This has significant potential implications for landlords throughout New Zealand facing significant seismic retrofit costs. Incentives, or some form of financial support, whether delivered through the tax system or some other mechanism may be required. International Financial Reporting Standards (IFRS) require insurance proceeds, including reimbursement for expenditure of a capital nature, be reported as income while expenditure itself is not recorded as a current period expense. This has the effect of overstating current income and creating a larger variation between reported income for accounting and taxation purposes. Businesses have obligations to maintain certain business records for tax purposes. Reconstructing records destroyed by a natural disaster depends on how the information was originally stored. The earthquakes have demonstrated the benefits of ‘off-site’ (outside Canterbury) storage, in particular electronic storage. This paper considers these issues and the Inland Revenue Department (Inland Revenue) Standard Practice Statement which deals with inter alia retention of business records in electronic format and offshore record storage. Employer provided accommodation is treated as income to the benefitting employee. A recent amendment to the Income Tax Act 2007 retrospectively provides that certain employer provided accommodation is exempt from tax. The time aspect of these rules is extended where the employee is involved in the Canterbury rebuild and comes from outside the region.
Collective identity construction in organisations engaged in an inter-organisational collaboration (IOC), especially temporary IOCs set up in disaster situations, has received scant attention in the organisational studies literature yet collective identity is considered to be important in fostering effective IOC operations. This doctoral study was designed to add to our understanding about how collective identity is constituted throughout the entire lifespan of a particular temporary coopetitive (i.e., simultaneously collaborative and competitive) IOC formed in a post-disaster environment. To achieve this purpose, a qualitative case study of the Stronger Christchurch Infrastructure Rebuild Team (SCIRT), a time-bound coopetition formed to repair the horizontal infrastructure in Christchurch, New Zealand after the devastating 2011 Canterbury earthquakes, was undertaken. Using data from semi-structured interviews, field observations, and organisational documents and other artefacts, an inductive analytic method was employed to explore how internal stakeholders engaged with and co- constructed a collective SCIRT identity and reconciled this with their home organization identity. The analysis revealed that the SCIRT collective identity was an ongoing process, involving the interweaving of social, temporal, material and geospatial dimensions constructed through intersecting cycles of senior managers’ sensegiving and employees’ sensemaking across SCIRT’s five and a half years of existence. Senior management deliberately undertook identity work campaigns that used organisational rituals, artefacts, and spatial design to disseminate and encourage a sense of “we are all SCIRT”. However, there was no common sense of “we-ness”. Identification with SCIRT was experienced differently among different groups of employees and across time. Employees’ differing senses of collective identity were accounted for by their past, present, and anticipated future relationships with their home organisation, and also (re)shaped by the geosocial environments in which they worked. The study supports previous research claiming that collective identity is a process of recursive sensegiving and sensemaking between senior managers and employees. However, it extends the literature by revealing the imbricated nature of collective identity, how members’ sense of “who we are” can change across the entire lifetime of a temporary IOC, and how sociomateriality, temporality, and geosocial effects strongly intervene in employees’ emerging senses of collective identity. Moreover, the study demonstrates how the ongoing identity work can be embedded in a time-space frame that further accentuates the influence of temporality, especially the anticipated future, organisational rituals, artefacts, and the geosocial environment. The study’s primary contribution to theory is a processual model of collective identity that applies specifically to a temporary IOC involving coopetition. In doing so, it represents a more finely nuanced and situational model than existing models. At a practical level, this model suggests that managers need to appreciate that organisational artefacts, rituals, and the prevailing organisational geosocial environment are inextricably linked in processes that can be manipulated to enhance the construction of collective identity.
The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes. The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world. In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison. The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs. After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices. Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.
The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.