Search

found 10 results

Research papers, Lincoln University

The 48hr Design Challenge, run by the Christchurch City Council and held at Lincoln University, provided an opportunity for Council to gain inspiration from the design and architecture industry, while testing the draft Central City Plan currently being developed. The Challenge was a response to the recent earthquakes in Christchurch and brought together local and international talent. A total of 15 teams took part in the Challenge, with seven people in each including engineers, planners, urban designers, architects and landscape architects, as well as one student on each team. The four sites within the Red Zone included the Cathedral Square and BNZ Building; 160 Gloucester Street; the Orion NZ Building at 203 Gloucester Street; and 90 Armagh Street, including the Avon River and Victoria Square. The fifth site, which sits outside the Red Zone, is the former Christchurch Women’s Hospital at 885 Colombo Street. This is team SoLA's entry for 160 Gloucester Street.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

A magnitude 6.3 earthquake struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011. The earthquake caused 182 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to the lifelines. The event created the largest lifeline disruption in a New Zealand city in 80 years, with much of the damage resulting from extensive and severe liquefaction in the Christchurch urban area. The Christchurch earthquake occurred when the Canterbury region and its lifelines systems were at the early stage of recovering from the 4 September 2010 Darfield (Canterbury) magnitude 7.1 earthquake. This paper describes the impact of the Christchurch earthquake on lifelines by briefly summarising the physical damage to the networks, the system performance and the operational response during the emergency management and the recovery phase. Special focus is given to the performance and management of the gas, electric and road networks and to the liquefaction ejecta clean-up operations that contributed to the rapid reinstatement of the functionality of many of the lifelines. The water and wastewater system performances are also summarized. Elements of resilience that contributed to good network performance or to efficient emergency and recovery management are highlighted in the paper.

Research papers, Lincoln University

On September the 4th 2010 and February 22nd 2011 the Canterbury region of New Zealand was shaken by two massive earthquakes. This paper is set broadly within the civil defence and emergency management literature and informed by recent work on community participation and social capital in the building of resilient cities. Work in this area indicates a need to recognise both the formal institutional response to the earthquakes as well as the substantive role communities play in their own recovery. The range of factors that facilitate or hinder community involvement also needs to be better understood. This paper interrogates the assumption that recovery agencies and officials are both willing and able to engage communities who are themselves willing and able to be engaged in accordance with recovery best practice. Case studies of three community groups – CanCERN, Greening the Rubble and Gap Filler – illustrate some of the difficulties associated with becoming a community during the disaster recovery phase. Based on my own observations and experiences, combined with data from approximately 50 in-depth interviews with Christchurch residents and representatives from community groups, the Christchurch City Council, the Earthquake Commission and so on, this paper outlines some practical strategies emerging communities may use in the early disaster recovery phase that then strengthens their ability to ‘participate’ in the recovery process.

Research papers, Lincoln University

Earthquakes and other major disasters present communities and their authorities with an extraordinary challenge. While a lot can be done to prepare a city’s response in the event of a disaster, few cities are truly prepared for the initial impact, devastation, grief, and the seemingly formidable challenge of recovery. Many people find themselves overwhelmed with facing critical problems; ones which they have often never had experience with before. While the simple part is agreeing on a desired outcome for recovery, it appears the argument that exists between stakeholders is the conflicting ideas of How To effectively achieve the main objective. What I have identified as an important step toward collaborating on the How To of recovery is to identify the ways in which each discipline can most effectively contribute to the recovery. Landscape architecture is just one of the many disciplines (that should be) invovled in the How To of earthquake recovery. Canterbury has an incredible opportunity to set the benchmark for good practice in earthquake recovery. To make the most of this opportuntiy, it is critical that landscape architects are more effectively engaged in roles of recovery across a much broader spectrum of recovery activities. The overarching purpose of this research is to explore and provide insight to the current and potential of landscape architects in the earthquake recovery period in Canterbury, using international good practice as a benchmark. The research is aimed at stimulating and guiding landscape architects dealing with the earthquake recovery in Canterbury, while informing stakeholders: emergency managers, authorities, other disciplines and the wider community of themost effective role(s) for landscape architects in the recovery period.

Research papers, University of Canterbury Library

On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).

Research papers, University of Canterbury Library

On 22 February 2011, Canterbury and its largest city Christchurch experienced its second major earthquake within six months. The region is facing major economic and organisational challenges in the aftermath of these events. Approximately 25% of all buildings in the Christchurch CBD have been “red tagged” or deemed unsafe to enter. The New Zealand Treasury estimates that the combined cost of the February earthquake and the September earthquake is approximately NZ$15 billion[2]. This paper examines the national and regional economic climate prior to the event, discusses the immediate economic implications of this event, and the challenges and opportunities faced by organisations affected by this event. In order to facilitate recovery of the Christchurch area, organisations must adjust to a new norm; finding ways not only to continue functioning, but to grow in the months and years following these earthquakes. Some organisations relocated within days to areas that have been less affected by the earthquakes. Others are taking advantage of government subsidised aid packages to help retain their employees until they can make long-term decisions about the future of their organisation. This paper is framed as a “report from the field” in order to provide insight into the early recovery scenario as it applies to organisations affected by the February 2011 earthquake. It is intended both to inform and facilitate discussion about how organisations can and should pursue recovery in Canterbury, and how organisations can become more resilient in the face of the next crisis.

Research papers, Lincoln University

An often overlooked aspect of urban housing development is the composition of the space between buildings; the streetscape. The pressures of suppressing suburban sprawl have seen housing developments respond by increasing residential density within more centralised city sites. Medium-density housing typologies are often used as urban infill in response to the challenge of accommodating an increasing population. A by-product of these renewed areas is the creation of new open space which serves as the fundamental public space for sociability to develop in communities. Street space should emphasise this public expression by encouraging social exchange and interaction. As a result, a neighbourhood owes its liveliness (or lack thereof) to its streets. The issue of density when applied to the urban housing landscape encompasses two major components: the occupancy of both the private realms, constituting the residential built form, and the public spaces that adjoins them, the streets. STREETSCAPE: dialogues of street + house. Continual transition between the realms of public and private (building and street space) enact active edges, giving way to public stimulation; the opportunity for experiencing other people. The advent of seeing and hearing other people in connection with daily comings and goings encourages social events to evolve, enhancing the notion of neighbourly conduct. Within New Zealand, and specifically in Christchurch as considered here, the compositions of current streetscapes lack the demeanor to really encourage and facilitate the idea of neighbourly interaction and public expression. Here lies the potential for new street design to significantly heighten the interplay of human activity. In response, this research project operates under the notion that the street spaces of urban residential areas are largely underutilised. This lack is particularly evident in the street. Street design should strive to produce spaces which stimulate the public life of residents. There exists a need to reassert eminence of the street as a space for vibrant neighbourhood life. This thesis employs design as a tool for researching and will involve using numerous concept generators to trigger the production of multiple scenarios. These scenarios are to explore the ways in which the streetscapes within medium-density urban communities could respond in the event of (re) development.

Research papers, University of Canterbury Library

The extent of liquefaction in the eastern suburbs of Christchurch (Aranui, Bexley, Avonside, Avonhead and Dallington) from the February 22 2011 Earthquake resulted in extensive damage to in-ground waste water pipe systems. This caused a huge demand for portable toilets (or port-a-loos) and companies were importing them from outside Canterbury and in some instances from Australia. However, because they were deemed “assets of importance” under legislation, their allocation had to be coordinated by Civil Defence and Emergency Management (CDEM). Consequently, companies supplying them had to ignore requests from residents, businesses and rest homes; and commitments to large events outside of the city such as the Hamilton 400 V8 Supercars and the Pasifika Festival in Auckland were impacted. Frustrations started to show as neighbourhoods questioned the equity of the port-a-loos distribution. The Prime Minister was reported as reassuring citizens in the eastern suburbs in the first week of March that1 “a report about the distribution of port-a-loos and chemical toilets shows allocation has been fair. Key said he has asked Civil Defence about the distribution process and where the toilets been sent. He said there aren’t enough for the scale of the event but that is quickly being rectified and the need for toilets is being reassessed all the time.” Nonetheless, there still remained a deep sense of frustration and exclusion over the equity of the port-a-loos distribution. This study took the simple approach of mapping where those port-a-loos were on 11-12 March for several areas in the eastern suburbs and this suggested that their distribution was not equitable and was not well done. It reviews the predictive tools available for estimating damage to waste water pipes and asks the question could this situation have been better planned so that pot-a-loo locations could have been better prioritised? And finally it reviews the integral roles of communication and monitoring as part of disaster management strategy. The impression from this study is that other New Zealand urban centres could or would also be at risk and that work is need to developed more rational management approaches for disaster planning.

Research papers, University of Canterbury Library

One of the great challenges facing human systems today is how to prepare for, manage, and adapt successfully to the profound and rapid changes wreaked by disasters. Wellington, New Zealand, is a capital city at significant risk of devastating earthquake and tsunami, potentially requiring mass evacuations with little or short notice. Subsequent hardship and suffering due to widespread property damage and infrastructure failure could cause large areas of the Wellington Region to become uninhabitable for weeks to months. Previous research has shown that positive health and well-being are associated with disaster-resilient outcomes. Preventing adverse outcomes before disaster strikes, through developing strengths-based skill sets in health-protective attitudes and behaviours, is increasingly advocated in disaster research, practise, and management. This study hypothesised that well-being constructs involving an affective heuristic play vital roles in pathways to resilience as proximal determinants of health-protective behaviours. Specifically, this study examined the importance of health-related quality of life and subjective well-being in motivating evacuation preparedness, measured in a community sample (n=695) drawn from the general adult population of Wellington’s isolated eastern suburbs. Using a quantitative epidemiological approach, the study measured the prevalence of key quality of life indicators (physical and mental health, emotional well-being or “Sense of Coherence”, spiritual well-being, social well-being, and life satisfaction) using validated psychometric scales; analysed the strengths of association between these indicators and the level of evacuation preparedness at categorical and continuous levels of measurement; and tested the predictive power of the model to explain the variance in evacuation preparedness activity. This is the first study known to examine multi-dimensional positive health and global well-being as resilient processes for engaging in evacuation preparedness behaviour. A cross-sectional study design and quantitative survey were used to collect self-report data on the study variables; a postal questionnaire was fielded between November 2008 and March 2009 to a sampling frame developed through multi-stage cluster randomisation. The survey response rate was 28.5%, yielding a margin of error of +/- 3.8% with 95% confidence and 80% statistical power to detect a true correlation coefficient of 0.11 or greater. In addition to the primary study variables, data were collected on demographic and ancillary variables relating to contextual factors in the physical environment (risk perception of physical and personal vulnerability to disaster) and the social environment (through the construct of self-determination), and other measures of disaster preparedness. These data are reserved for future analyses. Results of correlational and regression analyses for the primary study variables show that Wellingtonians are highly individualistic in how their well-being influences their preparedness, and a majority are taking inadequate action to build their resilience to future disaster from earthquake- or tsunami-triggered evacuation. At a population level, the conceptual multi-dimensional model of health-related quality of life and global well-being tested in this study shows a positive association with evacuation preparedness at statistically significant levels. However, it must be emphasised that the strength of this relationship is weak, accounting for only 5-7% of the variability in evacuation preparedness. No single dimension of health-related quality of life or well-being stands out as a strong predictor of preparedness. The strongest associations for preparedness are in a positive direction for spiritual well-being, emotional well-being, and life satisfaction; all involve a sense of existential meaningfulness. Spiritual well-being is the only quality of life variable making a statistically significant unique contribution to explaining the variance observed in the regression models. Physical health status is weakly associated with preparedness in a negative direction at a continuous level of measurement. No association was found at statistically significant levels for mental health status and social well-being. These findings indicate that engaging in evacuation preparedness is a very complex, holistic, yet individualised decision-making process, and likely involves highly subjective considerations for what is personally relevant. Gender is not a factor. Those 18-24 years of age are least likely to prepare and evacuation preparedness increases with age. Multidimensional health and global well-being are important constructs to consider in disaster resilience for both pre-event and post-event timeframes. This work indicates a need for promoting self-management of risk and building resilience by incorporating a sense of personal meaning and importance into preparedness actions, and for future research into further understanding preparedness motivations.