The 22nd February 2011, Mw 6.3 Christchurch earthquake in New Zealand caused major damage to critical infrastructure, including the healthcare system. The Natural Hazard Platform of NZ funded a short-term project called “Hospital Functions and Services” to support the Canterbury District Health Board’s (CDHB) efforts in capturing standardized data that describe the effects of the earthquake on the Canterbury region’s main hospital system. The project utilised a survey tool originally developed by researchers at Johns Hopkins University (JHU) to assess the loss of function of hospitals in the Maule and Bío-Bío regions following the 27th February 2010, Mw 8.8 Maule earthquake in Chile. This paper describes the application of the JHU tool for surveying the impact of Christchurch earthquake on the CDHB Hospital System, including the system’s residual capacity to deliver emergency response and health care. A short summary of the impact of the Christchurch earthquake on other CDHB public and private hospitals is also provided. This study demonstrates that, as was observed in other earthquakes around the world, the effects of damage to non-structural building components, equipment, utility lifelines, and transportation were far more disruptive than the minor structural damage observed in buildings (FEMA 2007). Earthquake related complications with re-supply and other organizational aspects also impacted the emergency response and the healthcare facilities’ residual capacity to deliver services in the short and long terms.
Micro - electro - mechanical system (MEMS) based accelerometers are now frequently used in many different parts of our day - to - day lives. It is also increasingly being used for structural testing applications. Researchers have had res ervation of using these devices as they are relatively untested, but now with the wider adoption, it provides a much cheaper and more versatile tool for structural engineering researchers. A number of damaged buildings in the Christchurch Central Business District (CBD) were instrumented with a number of low - cost MEMS accelerometers after the major Christchurch earthquakes. The accelerometers captured extremely high quality building response data as the buildings experienced thousands of aftershocks. This d ata set was amongst one of only a handful of data set s available around the world which provides building response data subjected to real ground motion. Furthermore, due to technological advances, a much larger than usual number of accelerometers has been deployed making the data set one of the most comprehensive available. This data set is utilised to extract modal parameters of the buildings. This paper summarises the operating requirements and preference for using such accelerometers for experimental mod al analysis. The challenges for adapting MEMS based devices for successful modal parameters identification are also discussed.
The Darfield earthquake caused widespread damage in the Canterbury region of New Zealand, with the majority of damage resulting from liquefaction and lateral spreading. One of the worst hit locations was the small town of Kaiapoi north of Christchurch, an area that has experienced liquefaction during past events and has been identified as highly susceptible to liquefaction. The low lying town sits on the banks of the Kaiapoi River, once a branch of the Waimakariri, a large braided river transporting gravelly sediment. The Waimakariri has been extensively modified both by natural and human processes, consequently many areas in and around the town were once former river channels.
On the second day of teaching for 2011, the University of Canterbury (UC) faced the most significant crisis of its 138-year history. After being shaken severely by a magnitude 7.1 earthquake on 4 September 2010, UC felt it was well along the pathway to getting back to ‘normal’. That all changed at 12:51pm on 22 February 2011, when Christchurch city was hit by an even more devastating event. A magnitude 6.3 (Modified Mercalli intensity ten – MM X) earthquake, just 13km south-east of the Christchurch city centre, caused vertical peak ground accelerations amongst the highest ever recorded in an urban environment, in some places more than twice the acceleration due to gravity. The earthquake caused immediate evacuation of the UC campus and resulted in significant damage to many buildings. Thankfully there were no serious injuries or fatalities on campus, but 185 people died in the city and many more suffered serious injuries. At the time of writing, eighteen months after the first earthquake in September, Christchurch is still experiencing regular earthquakes. Seismologists warn that the region may experience heightened seismicity for a decade or more. While writing this report we have talked with many different people from across the University. People’s experiences are different and we have not managed to talk with everyone, but we hope that by drawing together many different perspectives from across the campus that this report will serve two purposes; to retain our institutional memory of what we have learnt over the past eighteen months, and also to share our learnings with other organisations in New Zealand and around the world who, we hope, will benefit from learning about our experience.