The suburb of New Brighton in Christchurch Aotearoa was once a booming retail sector until the end of its exclusivity to Saturday shopping in 1980 and the aftermath of the devastating 2011 Christchurch earthquake. The suburb of New Brighton was hit particularly hard and fell into economic collapse, partly brought on by the nature of its economic structure. This implosion created an urban crisis where people and businesses abandoned the suburb and its once-booming commercial economy. As a result, New Brighton has been left with the residue of abandoned infrastructure and commercial propaganda such as billboards, ATM machines, commercial facades, and shopping trolleys that as abandoned fragments, no longer contribute to culture, society and the economy. This design-led research investigation proposes to repurpose the broken objects that were left behind. By strategically selecting objects that are symbols of the root cause of the economic devastation, the repurposed and re-contextualised fragments will seek to allegorically expose the city’s destructive economic narrative, while providing a renewed sense of place identity for the people. This design-led thesis investigation argues that the seemingly innocuous icons of commercial industry, such as billboards, ATM machines, commercial facades, and shopping trolleys, are intended to act as lures to encourage people to spend money; ultimately, these urban and architectural lures can contribute to economic devastation. The aim of this investigation is to repurpose abandoned fragments of capitalist infrastructure in ways that can help to unveil new possibilities for a disrupted community and enhance their awareness of what led to the urban disruption. The thesis proposes to achieve this research aim by exploring three principal research objectives: 1) to assimilate and re-contextualise disconnected urban fragments into new architectural interventions; 2) to anthropomorphise these new interventions so that they are recognisable as architectural ‘inhabitants’, the storytellers of the urban context; and 3) to curate these new architectural interventions in ways that enable a community-scale allegorical and didactic experience to be recognised.
The Canterbury earthquake sequence of 2010-2011 wrought ruptures in not only the physical landscape of Canterbury and Christchurch’s material form, but also in its social, economic, and political fabrics and the lives of Christchurch inhabitants. In the years that followed, the widespread demolition of the CBD that followed the earthquakes produced a bleak landscape of grey rubble punctuated by damaged, abandoned buildings. It was into this post-earthquake landscape that Gap Filler and other ‘transitional’ organisations inserted playful, creative, experimental projects to bring life and energy back into the CBD. This thesis examines those interventions and the development of the ‘Transitional Movement’ between July 2013 and June 2015 via the methods of walking interviews and participant observation. This critical period in Christchurch’s recovery serves as an example of what happens when do-it-yourself (DIY) urbanism is done at scale across the CBD and what urban experimentation can offer city-making. Through an understanding of space as produced, informed by Lefebvre’s thinking, I explore how these creative urban interventions manifested a different temporality to orthodox planning and demonstrate how the ‘soft’ politics of these interventions contain the potential for gentrification and also a more radical politics of the city, by creating an opening space for difference.
In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.
This thesis considers the presence and potential readings of graffiti and street art as part of the wider creative public landscape of Christchurch in the wake of the series of earthquakes that significantly disrupted the city physically and socially. While documenting a specific and unprecedented period of time in the city’s history, the prominence of graffiti and street art throughout the constantly changing landscape has also highlighted their popularity as increasingly entrenched additions to urban and suburban settings across the globe. In post-quake Christchurch, graffiti and street art have often displayed established tactics, techniques and styles while exploring and exposing the unique issues confronting this disrupted environment, illustrating both a transposable nature and the entwined relationship with the surrounding landscape evident in the conception of these art forms. The post-quake city has afforded graffiti and street art the opportunity to engage with a range of concepts: from the re-activation and re-population of the empty and abandoned spaces of the city, to commentaries on specific social and political issues, both angry and humorous, and notably the reconsideration of entrenched and evolving traditions, including the distinction between guerrilla and sanctioned work. The examples of graffiti and street art within this work range from the more immediate post-quake appearance of art in a group of affected suburbs, including the increasingly empty residential red-zone, to the use of the undefined spaces sweeping the central city, and even inside the Canterbury Museum, which housed the significant street art exhibition Rise in 2013-2014. These settings expose a number of themes, both distinctive and shared, that relate to both the post-disaster landscape and the concerns of graffiti and street art as art movements unavoidably entangled with public space.
The 2010-2011 Canterbury Earthquakes brought devastation to the city of Christchurch and has irrevocably affected the lives of the city’s residents. Years after the conclusion of these earthquakes, Christchurch and its residents are well on the path to recovery. Crime has proven an ongoing topic of discussion throughout this period, with news reports of increased burglary and arson in areas left largely abandoned by earthquake damage, and a rise in violent crime in suburban areas of Christchurch. Following the body of research that has considered the reaction of crime to natural disasters, this research has sought to comprehensively examine and understand the effects that the Canterbury Earthquakes had on crime. Examining Christchurch-wide offending, crime rates fell over the study period (July 2008 to June 2013), with the exception of domestic violence. Aside from a momentary increase in burglary in the days immediately following the Christchurch Earthquake, crime rates (as of 2013) have remained largely below pre-earthquake levels. Using Dual Kernel Density Estimation Analysis, a distinct spatial change in pre-earthquake crime hotspots was observed. These changes included an enormous decrease in central city offences, a rise in burglary in the eastern suburbs, and an increase in assault in areas outside of the central city. Logistic regression analysis, using a time-compensated dependent variable, identified a number of statistically-significant relationships between per CAU crime rate change and factors measuring socio-demographic characteristics, community cohesion, and the severity of disaster effects. The significance of these findings was discussed using elements of Social Disorganisation Theory, Routine Activity Theory, and Strain Theory. Consistent with past findings, social order was largely maintained following the Canterbury Earthquakes, with suggestion that increased collective efficacy and therapeutic communities had a negative influence on crime in the post-earthquake period. Areas of increased burglary and assault were associated with large population decreases, suggesting a link with the dissolution of communities and the removal of their inherent informal guardianship. Though observed, the increase in domestic violence was not associated with most neighbourhood-level variables. Trends in crime after the Canterbury Earthquakes were largely consistent with past research, and the media’s portrayal.
Oblique convergence of the Pacific and Australian Plates is accommodated in the northern South Island by the Marlborough Fault System. The Hope Fault is the southern of four major dextral strike-slip faults of this system. Hanmer Basin is a probable segment boundary between the Hope River and Conway segments of the Hope Fault. The Conway segment is transpressional and shows increasing structural complexity near the segment boundary at Hanmer Basin, with multiple Late Quaternary traces, and fault-parallel folding in response to across-fault shortening. Between Hossack Station and Hanmer Basin a crush zone in excess of one kilometre wide is exposed in incised streams and rivers. The crush zone has an asymmetrical geometry about the active trace of the Hope Fault, being only 100-300 metres wide south of the fault, and more than 500 metres wide north of the fault. The most intense deformation of Torlesse bedrock occurs at the south side of the fault zone, indicating that strain is accommodated against the fault footwall. North of the fault deformation is less intense, but occurs over a wider area. The wide fault zone at Hossack Station may reflect divergence of the Hanmer Fault, a major splay of the Hope Fault. At Hossack Station, the Hope Fault has accommodated at least 260 metres of dextral displacement during the Holocene. Dating of abandoned stream channels, offset by the Hope Fault, indicated a Late Holocene dextral slip-rate of 18±8 mm-¹ for the west end of the Conway segment. Using empirical formulae and inferred fault parameters, the expected magnitude of an earthquake generated by the Conway segment is M6.9 to M7.4; for an exceedence probability of 10%, the magnitude is M7.7 to M7.9. Effects associated with coseismic rupture of the Conway segment include shaking of up to MMIX along the ruptured fault and at Hanmer Basin. Uplift at the east end of Hanmer Basin, in conjunction with subsidence at the southwest margin of the basin, is resulting in the development of onlapping stratigraphy. Seismic reflection profiles support this theory. Possible along-fault migration of the basin is inferred to be a consequence of non-parallelism of the master faults.
While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.
Oblique-convergent plate collision between the Pacific and Australian plates across the South Island has resulted in shallow, upper crustal earthquake activity and ground surface deformation. In particular the Porters Pass - Amberley Fault Zone displays a complex hybrid zone of anastomosing dextral strike-slip and thrust/reverse faulting which includes the thrust/reverse Lees Valley Fault Zone and associated basin deformation. There is a knowledge gap with respect to the paleoseismicity of many of the faults in this region including the Lees Valley Fault Zone. This study aimed to investigate the earthquake history of the fault at a selected location and the structural and geomorphic development of the Lees Valley Fault Zone and eastern rangefront. This was investigated through extensive structural and geomorphic mapping, GPS field surveying, vertical aerial photo interpretation, analysis of Digital Elevation Models, paleoseismic trenching and optically stimulated luminescence dating. This thesis used a published model for tectonic geomorphology development of mountain rangefronts to understand the development of Lees Valley. Rangefront geomorphology is investigated through analysis of features such as rangefront sinuosity and faceted spurs and indicates the recently active and episodic nature of the uplifted rangefront. Analysis of fault discontinuity, fault splays, distribution of displacement, fault deformation zone and limited exposure of bedrock provided insight into the complex structure of the fault zone. These observations revealed preserved, earlier rangefronts, abandoned and uplifted within the eastern ranges, indicating a basinward shift in focus of faulting and an imbricate thrust wedge development propagating into the footwall of the fault zone and along the eastern ranges of Lees Valley. Fault scarp deformation analysis indicated multiple events have produced the deformation present preserved by the active fault trace in the northern valley. Vertical deformation along this scarp varied with a maximum of 11.5 m and an average of 5 m. Field mapping revealed fan surfaces of various ages have been offset and deformed, likely during the Holocene, based on expected relative surface ages. Geomorphic and structural mapping highlighted the effect of cross-cutting and inherited structures on the Lees Valley Fault, resulting in a step-over development in the centre of the eastern range-bounding trace. Paleoseismic trenching provided evidence of at least two earthquakes, which were constrained to post 21.6 ± 2.3 ka by optically stimulated luminescence dating. Single event displacements (1.48 ± 0.08 m), surface rupture earthquake magnitudes (Mw 6.7 ± 0.1, with potential to produce ≥ 7.0), and a minimum recurrence interval (3.6 ± 0.3 ka) indicated the Lees Valley Fault is an active structure capable of producing significant earthquake events. Results from this study indicate that the Lees Valley Fault Zone accommodates an important component of the Porters Pass - Amberley Fault Zone deformation and confirms the fault as a source of potentially damaging, peak ground accelerations in the Canterbury region. Remnants of previous rangefronts indicate a thrust wedge development of the Lees Valley Fault Zone and associated ranges that can potentially be used as a model of development for other thrust-fault bounded basins.
Spatial variations in river facies exerted a strong influence on the distribution of liquefaction features observed in Christchurch during the 2010-11 Canterbury Earthquake Sequence (CES). Liquefaction and liquefaction-induced ground deformation was primarily concentrated near modern waterways and areas underlain by Holocene fluvial deposits with shallow water tables (< 1 to 2 m). In southern Christchurch, spatial variations of liquefaction and subsidence were documented in the suburbs within inner meander loops of the Heathcote River. Newly acquired geospatial data, geotechnical reports and eye-witness discussions are compiled to provide a detailed account of the surficial effects of CES liquefaction and ground deformation adjacent to the Heathcote River. LiDAR data and aerial photography are used to produce a new series of original figures which reveal the locations of recurrent liquefaction and subsidence. To investigate why variable liquefaction patterns occurred, the distribution of surface ejecta and associated ground damage is compared with near-surface sedimentologic, topographic, and geomorphic variability to seek relationships between the near-surface properties and observed ground damages. The most severe liquefaction was concentrated within a topographic low in the suburb of St Martins, an inner meander loop of the Heathcote River, with liquefaction only minor or absent in the surrounding areas. Subsurface investigations at two sites in St Martins enable documentation of fluvial stratigraphy, the expressions of liquefaction, and identification of pre-CES liquefaction features. Excavation to water table depths (~1.5 m below the surface) across sand boils reveals multiple generations of CES liquefaction dikes and sills that cross-cut Holocene fluvial and anthropogenic stratigraphy. Based on in situ geotechnical tests (CPT) indicating sediment with a factor of safety < 1, the majority of surface ejecta was sourced from well-sorted fine to medium sand at < 5 m depth, with the most damaging liquefaction corresponding with the location of a low-lying sandy paleochannel, a remnant river channel from the Holocene migration of the meander in St Martins. In the adjacent suburb of Beckenham, where migration of the Heathcote River has been laterally confined by topography associated with the volcanic lithologies of Banks Peninsula, severe liquefaction was absent with only minor sand boils occurring closest to the modern river channel. Auger sampling across the suburb revealed thick (>1 m) clay-rich overbank and back swamp sediments that produced a stratigraphy which likely confined the units susceptible to liquefaction and prevented widespread ejection of liquefied material. This analysis suggests river migration promotes the formation and preservation of fluvial deposits prone to liquefaction. Trenching revealed the strongest CES earthquakes with large vertical accelerations favoured sill formation and severe subsidence at highly susceptible locations corresponding with an abandoned channel. Less vulnerable sites containing deeper and thinner sand bodies only liquefied in the strongest and most proximal earthquakes forming minor localised liquefaction features. Liquefaction was less prominent and severe subsidence was absent where lateral confinement of a Heathcote meander has promoted the formation of fluvial stratum resistant to liquefaction. Correlating CES liquefaction with geomorphic interpretations of Christchurch’s Heathcote River highlights methods in which the performance of liquefaction susceptibility models can be improved. These include developing a reliable proxy for estimating soil conditions in meandering fluvial systems by interpreting the geology and geomorphology, derived from LiDAR data and modern river morphology, to improve the methods of accounting for the susceptibility of an area. Combining geomorphic interpretations with geotechnical data can be applied elsewhere to identify regional liquefaction susceptibilities, improve existing liquefaction susceptibility datasets, and predict future earthquake damage.
The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.