Search

found 8 results

Research papers, University of Canterbury Library

Among the deformation features produced in Christchurch by the September 4th Darfield Earthquake were numerous and widespread “sand volcanoes”. Most of these structures occurred in urban settings and “erupted” through a hardened surface of concrete or tarseal, or soil. Sand volcanoes were also widespread in the Avon‐ Heathcote Estuary and offered an excellent opportunity to readily examine shallow subsurface profiles and as such the potential appearance of such structures in the rock record.

Research papers, University of Canterbury Library

Lake Taupō in New Zealand is associated with frequent unrest and small to moderate eruptions. It presents a high consequence risk scenario with immense potential for destruction to the community and the surrounding environment. Unrest associated with eruptions may also trigger earthquakes. While it is challenging to educate people about the hazards and risks associated with multiple eruptive scenarios, effective education of students can lead to better mitigation strategies and risk reduction. Digital resources with user-directed outcomes have been successfully used to teach action oriented skills relevant for communication during volcanic crisis [4]. However, the use of choose your own adventure strategies to enhance low probability risk literacy for Secondary school outreach has not been fully explored. To investigate how digital narrative storytelling can mediate caldera risk literacy, a module “The Kid who cried Supervolcano” will be introduced in two secondary school classrooms in Christchurch and Rotorua. The module highlights four learning objectives: (a) Super-volcanoes are beautiful but can be dangerous (b) earthquake (unrest) activity is normal for super-volcanoes (c) Small eruptions are possible from super-volcanoes and can be dangerous in our lifetimes (d) Super-eruptions are unlikely in our lifetimes. Students will create their digital narrative using the platform Elementari (www.elementari.io). The findings from this study will provide clear understanding of students’ understanding of risk perceptions of volcanic eruption scenarios and associated hazards and inform the design of educational resources geared towards caldera risk literacy.

Research papers, University of Canterbury Library

On February 22, 2011, a magnitude Mw 6.2 earthquake affected the Canterbury region, New Zealand, resulting in many fatalities. Liquefaction occurred across many areas, visible on the surface as ‘‘sand volcanoes’’, blisters and subsidence, causing significant damage to buildings, land and infrastructure. Liquefaction occurred at a number of sites across the Christchurch Boys High School sports grounds; one area in particular contained a piston ground failure and an adjacent silt volcano. Here, as part of a class project, we apply near-surface geophysics to image these two liquefaction features and determine whether they share a subsurface connection. Hand auger results enable correlation of the geophysical responses with the subsurface stratigraphy. The survey results suggest that there is a subsurface link, likely via a paleo-stream channel. The anomalous responses of the horizontal loop electromagnetic survey and electrical resistivity imaging highlight the disruption of the subsurface electrical properties beneath and between the two liquefaction features. The vertical magnetic gradient may also show a subtle anomalous response in this area, however the results are inconclusive. The ground penetrating radar survey shows disruption of the subsurface stratigraphy beneath the liquefaction features, in particular sediment mounding beneath the silt ejection (‘‘silt volcano’’) and stratigraphic disruption beneath the piston failure. The results indicate how near-surface geophysics allow the characteristics of liquefaction in the subsurface to be better understood, which could aid remediation work following liquefaction-induced land damage and guide interpretation of geophysical surveys of paleoliquefaction features.

Research papers, Victoria University of Wellington

Located on the edge of two tectonic plates, New Zealand has numerous fault lines and seismic risk across the whole country. The way this risk is communicated affects whether people prepare effectively or at all. Research has shown that perceptions of risk are affected by slight changes in wording, and that probabilities commonly reported by experts and media are often interpreted subjectively based on context. In the context of volcanoes, research has found that given a certain probability of a volcano in a specific time window, people perceive risk as higher in later time intervals within that window. The present study examines this pattern with regard to earthquakes and aftershocks in the New Zealand context. Participants in both Wellington (N = 102) and Christchurch (N = 98) were presented an expert statement of earthquake risk within a given time window in Wellington and aftershock risk in Christchurch, and asked to rate their perception of risk in specific intervals across the time window. For a Wellington earthquake, participants perceived risk as incrementally higher toward the end of the 50 year time window whereas for a Christchurch aftershock, risk perception increased slightly for the first three intervals of the 12 month time window. Likelihood of preparing was constant over the time windows, with Wellington citizens rating themselves more likely than Christchurch citizens to prepare for either an earthquake or aftershock, irrespective of current level of preparedness. These findings suggest that people view earthquakes as more likely later toward the end of a given time window and that they view aftershocks very differently to scientific predictions.

Research papers, The University of Auckland Library

During many years the analysis of some geophysical results of Charles Darwin was being carried out in Department. Darwin has connected almost 200 years ago results of catastrophic earthquakes with vertical movement of a surface of the Earth. Usually this movement less horizontal movement and its influence on destruction of cities is not considered. Earthquake hazard assessment studies were focused usually on the horizontal ground motion. Effects of the strong vertical motion were not, practically, discussed. The margins of safety against gravity-induced static vertical forces in constructed buildings usually provide adequate resistance to dynamic forces induced by the vertical acceleration during an earthquake. However, the earthquake in Christchurch is an example of the vertical seismic shock . The earthquake magnitude was rather small - nearby 6.3. However, the result was catastrophic. The same took place in 1835. It allowed to Darwin to formulate a few great ideas. Charles Darwin has explained qualitatively results of an interaction of huge seismic waves with volcanoes and the nature of volcanism and seismicity of our planet. These important data of Charles Darwin became very actual recently. It is possible to tell also the same about tsunami and extreme ocean waves described by Charles Darwin. Therefore this data were analyzed using modern mechanics, mathematics and physics in Department. In particular, the theory of catastrophic waves was developed based on Darwin's data. The theory tried to explain occurrence, evolution and distribution the catastrophic waves in various natural systems, since atoms, oceans, surfaces of the Earth and up to the very early Universe. Some results of the research were published in prestigious magazines. Later they were presented in two books devoted to Charles Darwin's anniversary (2009). Last from them was published in Russian (2011). We give here key ideas of this research which is a part of interdisciplinary researches of Department. Some ideas are discussed. Not less important purpose is very short historical review of some researches of Darwin. In particular, we underline Darwin' priority in the formulation of the bases of Dynamics Earth.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary, located in Christchurch, New Zealand, experienced coseismic deformation as a result of the February 22nd 2011 Christchurch Earthquake. The deformation is reflected as subsidence in the northern area and uplift in the southern area of the Estuary, in addition to sand volcanoes which forced up sediment throughout the floor of the Estuary altering estuary bed height and tidal flow. The first part of the research involved quantifying the change in the modern benthic foraminifera distribution as a result of the coseismic deformation caused by the February 22nd 2011 earthquake. By analysing the taxa present immediately post deformation and then the taxa present 2 years post deformation a comparison of the benthic foraminifera distribution can be made of the pre and post deformation. Both the northern and the southern areas of the Estuary were sampled to establish whether foraminifera faunas migrated landward or seaward as a result of subsidence and uplift experienced in different areas. There was no statistical change in overall species distribution in the two year time period since the coseismic deformation occurred, however, there were some noticeable changes in foraminifera distribution at BSNS-Z3 showing a landward migration of taxa. The changes that were predicted to occur as a result of the deformation of the Estuary are taking longer than expected to show up in the foraminiferal record and a longer time period is needed to establish these changes. The second stage involved establishing the modern distribution of foraminifera at Settlers Reserve in the southern area of the Avon-Heathcote Estuary by detailed sampling along a 160 m transect. Foraminifera are sensitive to environmental parameters, tidal height, grainsize, pH and salinity were recorded to evaluate the effect these parameters have on distribution. Bray-Curtis two-way cluster analysis was primarily used to assess the distribution pattern of foraminifera. The modern foraminifera distribution is comparable to that of the modern day New Zealand brackish-water benthic foraminifera distribution and includes species not yet found in other studies of the Avon-Heathcote Estuary. Differences in sampling techniques and the restricted intertidal marshland area where the transect samples were collected account for some of the differences seen between this model and past foraminifera studies. xiii The final stage involved sampling a 2.20 m core collected from Settlers Reserve and using the modern foraminiferal distribution to establish a foraminiferal history of Settlers Reserve. As foraminifera are sensitive to tidal height they may record past coseismic deformation events and the core was used to ascertain whether record of past coseismic deformation is preserved in Settlers Reserve sediments. Sampling the core for foraminifera, grainsize, trace metals and carbon material helped to build a story of estuary development. Using the modern foraminiferal distribution and the tidal height information collected, a down core model of past tidal heights was established to determine past rates of change. Foraminifera are not well preserved throughout the core, however, a sudden relative rise in sea level is recorded between 0.25 m and 0.85 m. Using trace metal and isotope analysis to develop an age profile, this sea level rise is interpreted to record coseismic subsidence associated with a palaeoseismic event in the early 1900’s. Overall, although the Avon-Heathcote Estuary experienced clear coseismic deformation as a result of the 22nd of February 2011 earthquake, modern changes in foraminiferal distribution cannot yet be tracked, however, past seismic deformation is identified in a core. The modern transect describes the foraminifera distribution which identifies species that have not been identified in the Avon-Heathcote Estuary before. This thesis enhances the current knowledge of the Avon-Heathcote Estuary and is a baseline for future studies.

Research papers, University of Canterbury Library

Fine grained sediment deposition in urban environments during natural hazard events can impact critical infrastructure and properties (urban terrain) leading to reduced social and economic function and potentially adverse public health effects. Therefore, clean-up of the sediments is required to minimise impacts and restore social and economic functionality as soon as possible. The strategies employed to manage and coordinate the clean-up significantly influence the speed, cost and quality of the clean-up operation. Additionally, the physical properties of the fine grained sediment affects the clean-up, transport, storage and future usage of the sediment. The goals of the research are to assess the resources, time and cost required for fine grained sediment clean-up in an urban environment following a disaster and to determine how the geotechnical properties of sediment will affect urban clean-up strategies. The thesis focuses on the impact of fine grained sediment (<1 mm) deposition from three liquefaction events during the Canterbury earthquake sequence (2010-2011) on residential suburbs and transport networks in Christchurch. It also presents how geotechnical properties of the material may affect clean-up strategies and methods by presenting geotechnical analysis of tephra material from the North Island of New Zealand. Finally, lessons for disaster response planning and decision making for clean-up of sediment in urban environments are presented. A series of semi-structured interviews of key stakeholders supported by relevant academic literature and media reports were used to record the clean-up operation coordination and management and to make a preliminary qualification of the Christchurch liquefaction ejecta clean-up (costs breakdown, time, volume, resources, coordination, planning and priorities). Further analysis of the costs and resources involved for better accuracy was required and so the analysis of Christchurch City Council road management database (RAMM) was done. In order to make a transition from general fine sediment clean-up to specific types of fine disaster sediment clean-up, adequate information about the material properties is required as they will define how the material will be handled, transported and stored. Laboratory analysis of young volcanic tephra from the New Zealand’s North Island was performed to identify their geotechnical properties (density, granulometry, plasticity, composition and angle of repose). The major findings of this research were that emergency planning and the use of the coordinated incident management system (CIMS) system during the emergency were important to facilitate rapid clean-up tasking, management of resources and ultimately recovery from widespread and voluminous liquefaction ejecta deposition in eastern Christchurch. A total estimated cost of approximately $NZ 40 million was calculated for the Christchurch City clean-up following the 2010-2011 Canterbury earthquake sequence with a partial cost of $NZ 12 million for the Southern part of the city, where up to 33% (418 km) of the road network was impacted by liquefaction ejecta and required clearing of the material following the 22 February 2011 earthquake. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill for all three liquefaction inducing earthquake events. The average cost per kilometre for the event clean-up was $NZ 5,500/km (4 September 2010), $NZ 11,650/km (22 February 2011) and $NZ 11,185/km (13 June 2011). The duration of clean-up time of residential properties and the road network was approximately two to three months for each of the three liquefaction ejecta events; despite events volumes and spatial distribution of ejecta. Interviews and quantitative analysis of RAMM data revealed that the experience and knowledge gained from the Darfield earthquake (4 September 2010) clean-up increased the efficiency of the following Christchurch earthquake induced liquefaction ejecta clean-up events. Density, particle size, particle shape, clay content and moisture content, are the important geotechnical properties that need to be considered when planning for a clean-up method that incorporates collection, transport and disposal or storage. The geotechnical properties for the tephra samples were analysed to increase preparedness and reaction response of potentially affected North Island cities from possible product from the active volcanoes in their region. The geotechnical results from this study show that volcanic tephra could be used in road or construction material but the properties would have to be further investigated for a New Zealand context. Using fresh volcanic material in road, building or flood control construction requires good understanding of the material properties and precaution during design and construction to extra care, but if well planned, it can be economically beneficial.

Research papers, Victoria University of Wellington

<strong>Sea level rise is one consequence of Earth’s changing climate. Century-long tide gauge records show that global-mean sea-level rise reached 11-16 cm during the twentieth century at a mean rate of 1.2 mm/y. Today, the average rate of global-mean sea-level rise is higher at 3-4 mm/y and is expected to increase in the future. This represents a hazard to low elevation coastal zones worldwide. Yet, before global sea level projections can be used to characterise future coastal flood hazard at a local scale, the effects of tectonics (and other processes) that drive vertical land motion (VLM) must be considered. VLM is defined as the vertical velocity (uplift or subsidence) of the solid surface with respect to the centre of Earth. In this study, new VLM maps are generated over coastal strips in New Zealand, using Sentinel-1 InSAR and GNSS data.</strong>In New Zealand, measuring VLM using InSAR on naturally vegetated or agricultural land is difficult due to signal decorrelation. Along the rural Bay of Plenty coastal strip, I use a persistent-scatterer approach to generate a VLM map from both east-looking ascending and west-looking descending Sentinel-1 data between 2015-2021. Using time-series data over the same time period from a dense network of 20 GNSS sensors, I tie InSAR-derived line-of-sight velocity to the 2014 ITRF reference frame. I test two different methods for measuring VLM and compare the results against GNSS vertical velocity along the Bay of Plenty coast. Best results are achieved by first removing the interpolated horizontal GNSS velocity field from each of the InSAR datasets, before averaging the two VLM estimates. Measured VLM is between -3 and 3 mm/y, with negative values (subsidence) occurring within the low-lying Rangitāiki Plain and Ōpōtiki valley, and uplift across the elevated region west of Matatā.This thesis integrates geomorphological, geological, and historical levelling VLM records with modern satellite datasets to assess VLM across timescales ranging from 10 to 100,000 years at Matatā. Uplift rate has been variable through time, with average uplift over the last 300,000 years of 1 mm/y, 4.5 mm/y since 1720 years, 2 mm/y between 1950-1978, and 10 mm/y between 2004-2011. Previous modelling has shown that the best fit to the 2004-2011 rapid uplift rates is an inflating magmatic source at ~10 km depth beneath Matatā. To reconcile all data, I present a VLM model that consists of short-lived periods (7 years) of rapid uplift (10 mm/y), separated by longer periods (30 years) of lower background uplift (3 mm/y). The episodic nature of VLM at Matatā likely reflects short-lived periods of magmatic intrusion. Episodic VLM characterised by large rates of uplift (10 mm/y) has been seen at Taupō volcano, and other volcanic centers globally. It has been 12 years since the end of the last intrusion episode; this modelling suggest one may expect to observe increased uplift rates at Matatā in the coming decades. Densely populated urban coastal strips are most at risk from the effects of relative sea-level rise. At the same time, anthropogenic activities associated with urbanization, such as groundwater withdrawal, and land reclamation can lead to local land subsidence (LLS), further exacerbating the risk to urban infrastructure. LLS refers to subsidence relative to nearby land area assumed to be stable. In this thesis, I create the first high-resolution (10 m) maps of LLS at six urban coastal strips in New Zealand, with a combined length of 285 km, using Sentinel-1 InSAR data between 2018-2021. This analysis reveals 89% of urban coastal strips are subsiding at rates of -0.5 mm/y or greater, and 11% is subsiding at higher rates of -3.0 mm/y or greater. On average, subsidence is -0.6 to -2.9 mm/y higher at the coastal strip, compared to inland areas occupied by GNSS stations. This analysis also documents highly-localised hotspots of LLS, with subsidence rates of up to -15 mm/y. In Christchurch, rapid and localised subsidence (-8 mm/y) is observed within coastal suburbs New Brighton and Southshore. In most cities, the highest subsidence rates occur on land reclaimed in the early-late twentieth century, and in areas built on Holocene sediment. Time-series analysis of LLS at sites of reclaimed land shows both linear and non-linear rates of deformation over time periods of up to 6-8 years. This thesis highlights the variable exposure to relative sea-level rise of New Zealand coastal strips, and demonstrates that in many cases current rates of VLM should be expected to continue for the next few decades.