The demand for a new approach to safeguarding New Zealand’s endangered historic buildings was identified as a result of the recent increase in building code and strengthening requirements following the Christchurch earthquakes of 2010-2011. The Wellington City Council identified 266 heritage buildings in the city that must be either strengthened or demolished to address these increased requirements. This thesis explores this threat as an opportunity for researching how contemporary design interventions can be challenged to both strengthen and become active participants in the ongoing history of New Zealand’s potentially endangered historic buildings. This thesis challenges the current approach of completely ‘restoring’ 19th-20th century historic buildings in New Zealand, to develop techniques that structurally reinforce historic buildings while inviting the progressive weathering of a building to remain as a testament to its history. This thesis proposes a structural intervention that is responsive to the progressive history of historic buildings, simultaneously introducing a contemporary structural intervention that both participates in and compliments the progressive historic transformations of the vehicle. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the life of a building, while fully restored buildings only enable visitors to witness the original form of the building. This thesis proposes a model for contemporary intervention within historic buildings that draws a design intervention from seismic strengthening.The notion of layering is explored as a design approach to incorporate the contemporary with the historic as an additional layer of exposed on-going history, thereby further exposing the layers of history evident within New Zealand’s historic buildings. This thesis combines layering theories of architects Louis Kahn and Carlo Scarpa with related theories of installation artist Mary Miss. The theoretical imperatives of Scarpa and Kahn are explored as a tool of engagement for the junction between the contemporary and historic building materials, and the work of Marry Miss is explored as a design approach for developing a contemporary intervention that references the layered historic building while inviting new means of occupancy between layers. The selected vehicle for the design research investigation is the Albemarle Hotel on Ghuznee Street in Wellington. The techniques proposed in this thesis to strengthen the Albemarle Hotel suggest an approach that might be applied to New Zealand’s wider body of historic buildings that constitute New Zealand’s heritage fabric, ultimately protecting them from demolition while preserving additional layers of their historic narratives. Over all the design research experiments suggest that contemporary interventions derived from structural strengthening may be a viable and cost-effective method of re-inhabiting New Zealand’s endangered heritage buildings, avoiding demolition and securing New Zealand’s heritage for future generations. Research Questions: This thesis challenges the current economically unsustainable approach of laterally reinforcing and completely ‘restoring’ 19th-20th century historic buildings in New Zealand. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the on-going life of a building. Can the weathered state of New Zealand's heritage buildings be proactively retained and celebrated as witnesses to their history? Can new lateral reinforcing requirements be conceived as active participants in revealing the on-going history of New Zealand's historic buildings?
The context of this study is the increasing need for public transport as issues over high private vehicle usage are becoming increasingly obvious. Public transport services need to compete with private transport to improve patronage, and issues with reliability need to be addressed. Bus bunching affects reliability through disruptions to the scheduled headways. The purpose of this study was to collect and analyse data to compare how travel time and dwell time vary, to explore the variation of key variables, and to better understand the sources of these variations. The Orbiter bus service in Christchurch was used as a case study, as it is particularly vulnerable to bus bunching. The dwell time was found to be more variable than travel time. It appeared the Canterbury earthquake had significantly reduced the average speeds for the Orbiter service. In 1964, Newell and Potts described a basic bus bunching theory, which was used as the basis for an Excel bus bunching model. This model allows input variables to vary stochastically. Random values were generated from four specified distributions derived from manually collected data, allowing variance across all bus platforms and buses. However the complexity resulted in stability and difficulty in achieving convergence, so the model was run in single Monte Carlo simulations. The outputs were realistic and showed a higher degree of bunching behaviour than previous models. The model demonstrated bunching phenomena that had not been observed in previous models, including spontaneously un-pairing, overtaking of buses delayed at platforms, and odd-numbered bunches of three buses. Furthermore, the study identified areas of further research for data collection and model development.
The structure and geomorphology of active orogens evolves on time scales ranging from a single earthquake to millions of years of tectonic deformation. Analysis of crustal deformation using new and established remote sensing techniques, and integration of these data with field mapping, geochronology and the sedimentary record, create new opportunities to understand orogenic evolution over these timescales. Timor Leste (East Timor) lies on the northern collisional boundary between continental crust from the Australian Plate and the Banda volcanic arc. GPS studies have indicated that the island of Timor is actively shortening. Field mapping and fault kinematic analysis of an emergent Pliocene marine sequence identifies gentle folding, overprinted by a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of orogen-parallel extension. Folding of Pliocene rocks in Timor may represent an early episode of contraction but the overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, during and after initial uplift of the orogen. Sedimentological, geochemical and Nd isotope data indicate that the island of Timor was emergent and shedding terrigenous sediment into carbonate basins prior to 4.5 Ma. Synorogenic tectonic and sedimentary phases initiated almost synchronously across much of Timor Leste and <2 Myr before similar events in West Timor. An increase in plate coupling along this obliquely converging boundary, due to subduction of an outlying continental plateau at the Banda Trench, is proposed as a mechanism for uplift that accounts for orogen-parallel extension and early uplift of Timor Leste. Rapid bathymetric changes around Timor are likely to have played an important role in evolution of the Indonesian Seaway. The 2010 Mw 7.1 Darfield (Canterbury) earthquake in New Zealand was complex, involving multiple faults with strike-slip, reverse and normal displacements. Multi-temporal cadastral surveying and airborne light detection and ranging (LiDAR) surveys allowed surface deformation at the junction of three faults to be analyzed in this study in unprecedented detail. A nested, localized restraining stepover with contractional bulging was identified in an area with the overall fault structure of a releasing bend, highlighting the surface complexities that may develop in fault interaction zones during a single earthquake sequence. The earthquake also caused river avulsion and flooding in this area. Geomorphic investigations of these rivers prior to the earthquake identify plausible precursory patterns, including channel migration and narrowing. Comparison of the pre and post-earthquake geomorphology of the fault rupture also suggests that a subtle scarp or groove was present along much of the trace prior to the Darfield earthquake. Hydrogeology and well logs support a hypothesis of extended slip history and suggests that that the Selwyn River fan may be infilling a graben that has accumulated late Quaternary vertical slip of <30 m. Investigating fault behavior, geomorphic and sedimentary responses over a multitude of time-scales and at different study sites provides insights into fault interactions and orogenesis during single earthquakes and over millions of years of plate boundary deformation.
The current study examined the psychological effects of recurring earthquake aftershocks in the city of Christchurch, New Zealand, which began in September 2010. Although it has been identified that exposure to ongoing adverse events such as continuing terrorist attacks generally leads to the development of increasing symptomology over time, differences in perceived controllability and blame between man-made and natural adverse events may contribute to differences in symptom trajectories. Residents of two Christchurch suburbs differentially affected by the earthquakes (N = 128) were assessed on measures of acute stress disorder, generalised anxiety, and depression, at two time points approximately 4-5 months apart, in order to determine whether symptoms intensified or declined over time in the face of ongoing aftershocks. At time 1, clinically significant levels of acute stress were identified in both suburbs, whereas clinical elevations in depression and anxiety were only evident in the most affected suburb. By time 2, both suburbs had fallen below the clinical range on all three symptom types, identifying a pattern of habituation to the aftershocks. Acute stress symptoms at time 2 were the most highly associated with the aftershocks, compared to symptoms of generalised anxiety and depression which were identified by participant reports to be more likely associated with other earthquake-related factors, such as insurance troubles and less frequent socialisation. The finding that exposure to ongoing earthquake aftershocks leads to a decline in symptoms over time may have important implications for the assessment of traumatic stress-related disorders, and provision of services following natural, as compared to man-made, adverse events.
Earthquake events can be sudden, stressful, unpredictable, and uncontrollable events in which an individual’s internal and external assumptions of their environment may be disrupted. A number of studies have found depression, and other psychological symptoms may be common after natural disasters. They have also found an association between depression, losses and disruptions for survivors. The present study compared depression symptoms in two demographically matched communities differentially affected by the Canterbury (New Zealand) earthquakes. Hypotheses were informed by the theory of learned helplessness (Abramson, Seligman & Teasdale, 1978). A door-to-door survey was conducted in a more physically affected community sample (N=67) and a relatively unaffected community sample (N=67), 4 months after the February 2011 earthquake. Participants were again assessed approximately 10 months after the quake. Measures of depression, acute stress, anxiety, aftershock anxiety, losses, physical disruptions and psychological disruptions were taken. In addition, prior psychological symptoms, medication, alcohol and cigarette use were assessed. Participants in the more affected community reported higher depression scores than the less affected community. Overall, elevated depressive score at time 2 were predicted by depression at time 1, acute stress and anxiety symptoms at time 2, physical disruptions following the quake and psychosocial functioning disruptions at time 2. These results suggest the influence of acute stress, anxiety and disruptions in predicting depression sometime after an earthquake. Supportive interventions directed towards depression, and other psychological symptoms, may prove helpful in psychological adjustment following ongoing disruptive stressors and uncontrollable seismic activity.
The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.
The September 2010 Canterbury and February 2011 Christchurch earthquakes and associated aftershocks have shown that the isolator displacement in Christchurch Women's Hospital (Christchurch City's only base-isolated structure) was significantly less than expected. Occupant accounts of the events have also indicated that the accelerations within the hospital superstructure were larger than would usually be expected within a base-isolated structure and that residual low-level shaking lasts for a longer period of time following the strong-motion of an event than for non-isolated structures.
This paper provides a comparison between the strong ground motions observed in the Christchurch central business district in the 4 September 2010 Mw7.1 Darfield, and 22 February 2011 Mw6.3 Christchurch earthquakes with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. Despite Tokyo being located approximately 110km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were strong enough to cause structural damage in Tokyo and also significant liquefaction to loose reclaimed soils in Tokyo bay. Comparisons include the strong motion time histories, response spectra, significant durations and arias intensity. The implications for large earthquakes in New Zealand are also briefly discussed.
The Canterbury earthquakes are unique in that the there have been a series of major earthquakes, each with their own subsequent aftershock pattern. These have extended from the first large earthquake in September 2010 to currently, at the time of writing, two years later. The last significant earthquake of over magnitude 5.0 on the Richter scale was in May on 2012, and the total number of aftershocks has exceeded 12,000. The consequences, in addition to the loss of life, significant injury and widespread damage, have been far reaching and long term, with detrimental effects and still uncertain effects for many. This provides unique challenges for individuals, communities, organisations and institutions within Canterbury. This document reviews research-based understandings of the concept of resilience. A conceptual model is developed which identifies a number of the factors that influence individual and household resilience. Guided by the model, a series of recommendations are developed for practices that will support individual and household resilience in Canterbury in the aftermath of the 2010-2011 earthquakes.
This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.
During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.
Following the 2010/2011 Canterbury earthquakes a detailed campaign of door to door assessments was conducted in a variety of areas of Christchurch to establish the earthquake performance of residential dwellings having masonry veneer as an external cladding attached to a lightweight timber framing system. Specifically, care was taken to include regions of Christchurch which experienced different levels of earthquake shaking in order to allow comparison between the performance of different systems and different shaking intensities. At the time of the inspections the buildings in the Christchurch region had been repeatedly subjected to large earthquakes, presenting an opportunity for insight into the seismic performance of masonry veneer cladding. In total just under 1100 residential dwellings were inspected throughout the wider Christchurch area, of which 24% were constructed using the older nail-on veneer tie system (prior to 1996) and 76% were constructed using screw fixed ties to comply with the new 1996 standards revision (post-1996), with 30% of all inspected houses being of two storey construction. Of the inspected dwellings 27% had some evidence of liquefaction, ground settlement or lateral spreading. Data such as damage level, damage type, crack widths, level of repair required and other parameters were collected during the survey. A description of the data collection processes and a snapshot of the analysis results are presented within. http://15ibmac.com/home/
On the second day of teaching for 2011, the University of Canterbury (UC) faced the most significant crisis of its 138-year history. After being shaken severely by a magnitude 7.1 earthquake on 4 September 2010, UC felt it was well along the pathway to getting back to ‘normal’. That all changed at 12:51pm on 22 February 2011, when Christchurch city was hit by an even more devastating event. A magnitude 6.3 (Modified Mercalli intensity ten – MM X) earthquake, just 13km south-east of the Christchurch city centre, caused vertical peak ground accelerations amongst the highest ever recorded in an urban environment, in some places more than twice the acceleration due to gravity. The earthquake caused immediate evacuation of the UC campus and resulted in significant damage to many buildings. Thankfully there were no serious injuries or fatalities on campus, but 185 people died in the city and many more suffered serious injuries. At the time of writing, eighteen months after the first earthquake in September, Christchurch is still experiencing regular earthquakes. Seismologists warn that the region may experience heightened seismicity for a decade or more. While writing this report we have talked with many different people from across the University. People’s experiences are different and we have not managed to talk with everyone, but we hope that by drawing together many different perspectives from across the campus that this report will serve two purposes; to retain our institutional memory of what we have learnt over the past eighteen months, and also to share our learnings with other organisations in New Zealand and around the world who, we hope, will benefit from learning about our experience.