Search

found 75 results

Research papers, University of Canterbury Library

The aim of this thesis was to examine the spatial and the temporal patterns of anxiety and chest pain resulting from the Canterbury, New Zealand earthquaeks. Three research objectives were identified: examine any spatial or termporal clusters of anxiety and chest pain; examine the associations between anxiety, chest pain and damage to neighbourhood; and determine any statistically significant difference in counts of anxiety and chest pain after each earthquake or aftershock which resulted in severe damage. Measures of the extent of liquefaction the location of CERA red-zones were used as proxy measures for earthquake damage. Cases of those who presented to Christchurch Public Hospital Emergency Department with either anxiety or chest pain between May 2010 and April 2012 were aggregated to census area unit (CAU) level for analysis. This thesis has taken a unique approach to examining the spatial and spatio-temporal variations of anxiety and chest pain after an earthquake and offers unique results. This is the first study of its kind to use a GIS approach when examining Canterbury specific earthquake damage and health variables at a CAU level after the earthquakes. Through the use of spatio-termporal scan modelling, negative and linear regression modelling and temporal linear modelling with dummy variables this research was able to conclude there are significant spatial and temporal variations in anxiety and chest pain resulting from the earthquakes. The spatio-termporal scan modelling identified a hot cluster of both anxiety and chest pain within Christchurch at the same time the earthquakes occurred. The negative binomial model found liquefaction to be a stronger predictor of anxiety than the Canterbury Earthquake Recovery Authority's (CERA) land zones. The linear regression model foun chest pain to be positively associated with all measures of earthquake damage with the exception of being in the red-zone. The temporal modelling identified a significant increase in anxiety cases one month after a major earthquake, and chest pain cases spiked two weeks after an earthquake and gradually decreased over the following five weeks. This research was limited by lack of control period data, limited measures of earthquake damage, ethical restrictions, and the need for population tracking data. The findings of this research will be useful in the planning and allocation of mental wellbeing resources should another similar event like the Canterbury Earthquakes occur in New Zealand.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.

Research papers, The University of Auckland Library

In 2013 Becca Wood, Spatial Performance Practitioner, and Molly Mullen, Applied Theatre Practitioner, collaborated to create a short ambulatory performance with audio score for a group of drama educators attending a conference workshop on the possibilities of walking as performance. The performance was created remotely from the intended site: Rangi Ruru Girls’ School, in Christchurch, New Zealand. Following the destruction of the 2012 earthquake, this site was in a state of transformation and recovery. The performance walk attended to the histories, geographies and politics of this place, somatically, architecturally and socially. This paper engages with three critical questions: How might mediated listening and walking activate the coming together of bodies and place? What performative shifts occurred for the participants in the walk and workshop? How might we come to our senses? Through a performative practice of mediated site-based listening and walking, this paper is a reflection on the creative process and performance. We consider the potential for technologically mediated performance to offer new modes for learning and creative practice through interdisciplinary and evolving intermedial practices. http://www.tandfonline.com/toc/crde20/current AM - Accepted Manuscript

Research papers, University of Canterbury Library

The 2010-2011 Canterbury Earthquakes brought devastation to the city of Christchurch and has irrevocably affected the lives of the city’s residents. Years after the conclusion of these earthquakes, Christchurch and its residents are well on the path to recovery. Crime has proven an ongoing topic of discussion throughout this period, with news reports of increased burglary and arson in areas left largely abandoned by earthquake damage, and a rise in violent crime in suburban areas of Christchurch. Following the body of research that has considered the reaction of crime to natural disasters, this research has sought to comprehensively examine and understand the effects that the Canterbury Earthquakes had on crime. Examining Christchurch-wide offending, crime rates fell over the study period (July 2008 to June 2013), with the exception of domestic violence. Aside from a momentary increase in burglary in the days immediately following the Christchurch Earthquake, crime rates (as of 2013) have remained largely below pre-earthquake levels. Using Dual Kernel Density Estimation Analysis, a distinct spatial change in pre-earthquake crime hotspots was observed. These changes included an enormous decrease in central city offences, a rise in burglary in the eastern suburbs, and an increase in assault in areas outside of the central city. Logistic regression analysis, using a time-compensated dependent variable, identified a number of statistically-significant relationships between per CAU crime rate change and factors measuring socio-demographic characteristics, community cohesion, and the severity of disaster effects. The significance of these findings was discussed using elements of Social Disorganisation Theory, Routine Activity Theory, and Strain Theory. Consistent with past findings, social order was largely maintained following the Canterbury Earthquakes, with suggestion that increased collective efficacy and therapeutic communities had a negative influence on crime in the post-earthquake period. Areas of increased burglary and assault were associated with large population decreases, suggesting a link with the dissolution of communities and the removal of their inherent informal guardianship. Though observed, the increase in domestic violence was not associated with most neighbourhood-level variables. Trends in crime after the Canterbury Earthquakes were largely consistent with past research, and the media’s portrayal.

Research papers, University of Canterbury Library

The Canterbury earthquakes resulted in numerous changes to the waterways of Ōtautahi Christchurch. These included bank destabilisation, liquefaction effects, changes in bed levels, and associated effects on flow regimes and inundation levels. This study set out to determine if these effects had altered the location and pattern of sites utilised by īnanga (Galaxias maculatus) for spawning, which are typically restricted to very specific locations in upper estuarine areas. Extensive surveys were carried out in the Heathcote/Ōpāwaho and Avon/Ōtākaro catchments over the four peak months of the 2015 spawning season. New spawning sites were found in both rivers and analysis against pre-earthquake records identified that other significant changes have occurred. Major changes include the finding of many new spawning sites in the Heathcote/Ōpāwaho catchment. Sites now occur up to 1.5km further downstream than the previously reported limit and include the first records of spawning below the Woolston Cut. Spawning sites in the Avon/Ōtākaro catchment also occur in new locations. In the mainstem, sites now occur both upstream and downstream of all previously reported locations. A concentrated area of spawning was identified in Lake Kate Sheppard at a distinctly different location versus pre-quake records, and no spawning was found on the western shores. Spawning was also recorded for the first time in Anzac Creek, a nearby waterway connected to Lake Kate Sheppard via a series of culverts.

Research papers, University of Canterbury Library

This paper presents a methodology by which both site-specific and spatially distributed ground motion intensity can be obtained immediately following an earthquake event. The methodology makes use of both prediction models for ground motion intensity and its correlation over spatial distances. A key benefit of the methodology is that the ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and also standard deviation, with the standard deviation being a function of the distance to nearby strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence. It is illustrated how these conditional maps can be used for post-event evaluation of liquefaction triggering criteria which have been adopted by the Department of Building and Housing (DBH). Secondly, the conditional distribution of response spectral ordinates is obtained at a specific location for the purposes of determining appropriate ground motion records for use in seismic response analyses of important structures at locations where direct recordings are absent.

Research papers, University of Canterbury Library

This paper presents site-specific and spatially-distributed ground-motion intensity estimates which have been utilized in the aftermath of the 2010-2011 Canterbury, New Zealand earthquakes. The methodology underpinning the ground motion intensity estimation makes use of both prediction models for ground motion intensity and its within-event spatial correlation. A key benefit of the methodology is that the estimated ground motion intensity at a given location is not a single value but a distribution of values. The distribution is comprised of both a mean and standard deviation, with the standard deviation being a function of the distance to nearby observations at strong motion stations. The methodology is illustrated for two applications. Firstly, maps of conditional peak ground acceleration (PGA) have been developed for the major events in the Canterbury earthquake sequence, which among other things, have been utilized for assessing liquefaction triggering susceptibility of land in residential areas. Secondly, the conditional distribution of response spectral ordinates is obtained at the location of the Canterbury Television building (CTV), which catastrophically collapsed in the 22 February 2011 earthquake. The conditional response spectra provide insight for the selection of ground motion records for use in forensic seismic response analyses of important structures at locations where direct recordings are absent.

Research papers, University of Canterbury Library

This research attempts to understand whether community resilience and perceived livability are influenced by housing typologies in Christchurch, New Zealand. Using recent resident surveys undertaken by the Christchurch City Council, two indexes were created to reflect livability and community resilience. Indicators used to create both indexes included (1) enjoyment living in neighbourhood (2) satisfaction with local facilities (3) safety walking and (4) safety using public transport, (5) sense of community (6) neighbour interactions, (7) home ownership and (8) civic engagement. Scores were attributed to 72 neighbourhoods across Christchurch –and each neighbourhood was classified in one of the following housing typologies; (1) earthquake damaged, (2) relatively undamaged, (3) medium density and (4) greenfield developments. Spatial analysis of index scores and housing classifications suggest housing typologies do influence resident’s perceived livability and community bonds to an extent. It was found that deprivation also had a considerable influence on these indexes as well as residential stability. These additional influences help explain why neighbourhoods within the same housing classification differ in their index scores. Based on these results, several recommendations have been made to the CCC in relation to future research, urban development strategies and suburb specific renewal projects. Of chief importance, medium density neighbourhoods and deprived neighbourhoods require conscious efforts to foster community resilience. Results indicate that community resilience might be more important than livability in having a positive influence on the lived experience of residents. While thoughtful design and planning are important, this research suggests geospatial research tools could enable better community engagement outcomes and planning outcomes, and this could be interwoven into proactive and inclusive planning approaches like placemaking.

Research papers, University of Canterbury Library

Landslides are significant hazards, especially in seismically-active mountainous regions, where shaking amplified by steep topography can result in widespread landsliding. These landslides present not only an acute hazard, but a chronic hazard that can last years-to-decades after the initial earthquake, causing recurring impacts. The Mw 7.8 Kaikōura earthquake caused more than 20,000 landslides throughout North Canterbury and resulted in significant damage to nationally significant infrastructure in the coastal transport corridor (CTC), isolating Kaikōura from the rest of New Zealand. In the years following, ongoing landsliding triggered by intense rainfall exacerbated the impacts and slowed the recovery process. However, while there is significant research on co-seismic landslides and their initial impacts in New Zealand, little research has explored the evolution of co-seismic landslides and how this hazard changes over time. This research maps landslides annually between 2013 and 2021 to evaluate the changes in pre-earthquake, co-seismic and post-earthquake rates of landsliding to determine how landslide hazard has changed over this time. In particular, the research explores how the number, area, and spatial distribution of landslides has changed since the earthquake, and whether post-earthquake mitigation works have in any way affected the long-term landslide hazard. Mapping of landslides was undertaken using open-source, medium resolution Landsat-8 and Sentinel-2 satellite imagery, with landslides identified visually and mapped as single polygons that capture both the source zone and deposit. Three study areas with differing levels of post-earthquake mitigation are compared: (i) the northern CTC, where the majority of mitigation was in the form of active debris removal; (ii) the southern CTC, where mitigation was primarily via passive protection measures; and (iii) Mount Fyffe, which has had no mitigation works since the earthquake. The results show that despite similar initial impacts during the earthquake, the rate of recovery in terms of landslide rates varies substantially across the three study areas. In Mount Fyffe, the number and area of landslides could take 45 and 22 years from 2021 respectively to return to pre-earthquake levels at the current rate. Comparatively, in the CTC, it could take just 5 years and 3-4 years from 2021 respectively. Notably, the fastest recovery in terms of landslide rates in the CTC was primarily located directly along the transport network, whereas what little recovery did occur in Mount Fyffe appeared to follow no particular pattern. Importantly, recovery rates in the northern CTC were notably higher than in the southern CTC, despite greater co-seismic impacts in the former. Combined, these results suggest the active, debris removal mitigation undertaken in the northern CTC may have had the effect of dramatically reducing the time for landslide rates to return to pre-earthquake levels. The role of slope angle and slope aspect were explored to evaluate if these observations could be driven by local differences in topography. The Mount Fyffe study area has higher slope angles than the CTC as a whole and landslides predominantly occurred on slightly steeper slopes than in the CTC. This may have contributed to the longer recovery times for landsliding in Mount Fyffe due to greater gravitational instability, however the observed variations are minor compared to the differences in recovery rates. In terms of slope aspect, landslides in Mount Fyffe preferentially occurred on north- and south-facing slopes whereas landslides in the CTC preferred the east- and south-facing slopes. The potential role of these differences in landslide recovery remains unclear but may be related to the propagation direction of the earthquake and the tracking direction of post-earthquake ex-tropical cyclones. Finally, landslides in the CTC are observed to be moving further away from the transport network and the number of landslides impacting the CTC decreased significantly since the earthquake. Nevertheless, the potential for further landslide reactivation remains. Therefore, despite the recovery in the CTC, it is clear that there is still risk of the transport network being impacted by further landsliding, at least for the next 3-5 yrs.

Research papers, University of Canterbury Library

During the 2011 M7.8 Kaikōura earthquake, ground motions recorded near the epicentre showed a significant spatial variation. The Te Mara farm (WTMC) station, the nearest to the epicentre, recorded 1g and 2.7g of horizontal and vertical peak ground accelerations (PGA), respectively. The nearby Waiu Gorge (WIGC) station recorded a horizontal PGA of 0.8g. Interestingly, however, the Culverden Airlie Farm (CULC) station that was very closely located to WIGC recorded a horizontal PGA of only 0.25g. This poster demonstrates how the local geological condition could have contributed to the spatially variable ground motions observed in the North Canterbury, based on the results of recently conducted geophysical investigations. The surficial geology of this area is dominated by alluvial gravel deposits with traces of silt. A borehole log showed that the thickness of the sediments at WTMC is over 76 metres. Interestingly, the shear wave velocity (Vs) profiles obtained from the three strong motion sites suggest unusually high shear wave velocity of the gravelly sediments. The velocity of sediments and the lack of clear peaks in the horizontal-to-vertical (H/V) spectral ratio at WTMC suggest that the large ground motion observed at this station was likely caused by the proximity of the station to the causative fault itself; the site effect was likely insignificant. Comparisons of H/V spectral ratios and Vs profiles suggest that the sediment thickness is much smaller at WIGC compared with CULC; the high PGA at WIGC was likely influenced by the high-frequency amplification caused by the response of shallow sediments.

Research papers, University of Canterbury Library

The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The aim of this multidisciplinary research was to retrospectively analyse the gastroenteritis prevalence following the February 22, 2011 earthquake in Christchurch. The first focus was to assess whether earthquake-induced infrastructure damage, liquefaction, and gastroenteritis agents spatially explained the recorded gastroenteritis cases over the period of 35 days following the February 22, 2011 earthquake in Christchurch. The gastroenteritis agents considered in this study were Escherichia coli found in the drinking water supply (MPN/100mL) and Non-Compliant Free Associated Chlorine (FAC-NC) (less than <0.02mg/L). The second focus was the protocols that averted a gastroenteritis outbreak at three Emergency Centres (ECs): Burnside High School Emergency Centre (BEC); Cowles Stadium Emergency Centre (CEC); and Linwood High School Emergency Centre (LEC). Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols and indirect themes included type of EC building (school or a sports stadium), and EC staff. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. This research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. A damage profile was created by amalgamating different types of damage for the considered factors for each Census Area Unit (CAU) in Christchurch. The damage profile enabled the application of a variety of statistical methods which included Moran’s I , Hot Spot (HS) analysis, Spearman’s Rho, and Besag–York–Mollié Model using a range of software. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. The ECs were selected to represent the Christchurch area, and were situated where potential for gastroenteritis was high. BEC represented the western side of Christchurch; whilst, CEC and LEC represented the eastern side, where the potential for gastroenteritis was high according to the outputs of the quantitative spatial modelling. Qualitative analysis from the interviews at the ECs revealed that evacuees were arriving at the ECs with gastroenteritis-like symptoms. Participants believed that those symptoms did not originate at the ECs. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols that included prolific use of hand sanitisers; surveillance; and the services offered. Indirect themes included the EC layout, type of EC building (school or a sports stadium), and EC staff. Indirect themes governed the quality and sustainability of the direct themes implemented, which in turn averted gastroenteritis outbreaks at the ECs. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. It was concluded that gastroenteritis point prevalence following the February 22, 2011 earthquake could not be solely explained by earthquake-induced infrastructure damage, liquefaction, and gastroenteritis causative agents alone. However, this research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Creating a damage profile for each CAU and using spatial data analysis can isolate vulnerable areas, and qualitative data analysis provides localised information. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally.

Research papers, University of Canterbury Library

Natural hazard disasters often have large area-wide impacts, which can cause adverse stress-related mental health outcomes in exposed populations. As a result, increased treatment-seeking may be observed, which puts a strain on the limited public health care resources particularly in the aftermath of a disaster. It is therefore important for public health care planners to know whom to target, but also where and when to initiate intervention programs that promote emotional wellbeing and prevent the development of mental disorders after catastrophic events. A large body of literature assesses factors that predict and mitigate disaster-related mental disorders at various time periods, but the spatial component has rarely been investigated in disaster mental health research. This thesis uses spatial and spatio-temporal analysis techniques to examine when and where higher and lower than expected mood and anxiety symptom treatments occurred in the severely affected Christchurch urban area (New Zealand) after the 2010/11 Canterbury earthquakes. High-risk groups are identified and a possible relationship between exposure to the earthquakes and their physical impacts and mood and anxiety symptom treatments is assessed. The main research aim is to test the hypothesis that more severely affected Christchurch residents were more likely to show mood and anxiety symptoms when seeking treatment than less affected ones, in essence, testing for a dose-response relationship. The data consisted of mood and anxiety symptom treatment information from the New Zealand Ministry of Health’s administrative databases and demographic information from the National Health Index (NHI) register, when combined built a unique and rich source for identifying publically funded stress-related treatments for mood and anxiety symptoms in almost the whole population of the study area. The Christchurch urban area within the Christchurch City Council (CCC) boundary was the area of interest in which spatial variations in these treatments were assessed. Spatial and spatio-temporal analyses were done by applying retrospective space-time and spatial variation in temporal trends analysis using SaTScan™ software, and Bayesian hierarchical modelling techniques for disease mapping using WinBUGS software. The thesis identified an overall earthquake-exposure effect on mood and anxiety symptom treatments among Christchurch residents in the context of the earthquakes as they experienced stronger increases in the risk of being treated especially shortly after the catastrophic 2011 Christchurch earthquake compared to the rest of New Zealand. High-risk groups included females, elderly, children and those with a pre-existing mental illness with elderly and children especially at-risk in the context of the earthquakes. Looking at the spatio-temporal distribution of mood and anxiety symptom treatments in the Christchurch urban area, a high rates cluster ranging from the severely affected central city to the southeast was found post-disaster. Analysing residential exposure to various earthquake impacts found that living in closer proximity to more affected areas was identified as a risk factor for mood and anxiety symptom treatments, which largely confirms a dose-response relationship between level of affectedness and mood and anxiety symptom treatments. However, little changes in the spatial distribution of mood and anxiety symptom treatments occurred in the Christchurch urban area over time indicating that these results may have been biased by pre-existing spatial disparities. Additionally, the post-disaster mobility activity from severely affected eastern to the generally less affected western and northern parts of the city seemed to have played an important role as the strongest increases in treatment rates occurred in less affected northern areas of the city, whereas the severely affected eastern areas tended to show the lowest increases. An investigation into the different effects of mobility confirmed that within-city movers and temporary relocatees were generally more likely to receive care or treatment for mood or anxiety symptoms, but moving within the city was identified as a protective factor over time. In contrast, moving out of the city from minor, moderately or severely damaged plain areas of the city, which are generally less affluent than Port Hills areas, was identified as a risk factor in the second year post-disaster. Moreover, residents from less damaged plain areas of the city showed a decrease in the likelihood of receiving care or treatment for mood or anxiety symptoms compared to those from undamaged plain areas over time, which also contradicts a possible dose-response relationship. Finally, the effects of the social and physical environment, as well as community resilience on mood and anxiety symptom treatments among long-term stayers from Christchurch communities indicate an exacerbation of pre-existing mood and anxiety symptom treatment disparities in the city, whereas exposure to ‘felt’ earthquake intensities did not show a statistically significant effect. The findings of this thesis highlight the complex relationship between different levels of exposure to a severe natural disaster and adverse mental health outcomes in a severely affected region. It is one of the few studies that have access to area-wide health and impact information, are able to do a pre-disaster / post-disaster comparison and track their sample population to apply spatial and spatio-temporal analysis techniques for exposure assessment. Thus, this thesis enhances knowledge about the spatio-temporal distribution of adverse mental health outcomes in the context of a severe natural disaster and informs public health care planners, not only about high-risk groups, but also where and when to target health interventions. The results indicate that such programs should broadly target residents living in more affected areas as they are likely to face daily hardship by living in a disrupted environment and may have already been the most vulnerable ones before the disaster. Special attention should be focussed on women, elderly, children and people with pre-existing mental illnesses as they are most likely to receive care or treatment for stress-related mental health symptoms. Moreover, permanent relocatees from affected areas and temporarily relocatees shortly after the disaster may need special attention as they face additional stressors due to the relocation that may lead to the development of adverse mental health outcomes needing treatment.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

The overarching goal of this dissertation is to improve predictive capabilities of geotechnical seismic site response analyses by incorporating additional salient physical phenomena that influence site effects. Specifically, multidimensional wave-propagation effects that are neglected in conventional 1D site response analyses are incorporated by: (1) combining results of 3D regional-scale simulations with 1D nonlinear wave-propagation site response analysis, and (2) modelling soil heterogeneity in 2D site response analyses using spatially-correlated random fields to perturb soil properties. A method to combine results from 3D hybrid physics-based ground motion simulations with site-specific nonlinear site response analyses was developed. The 3D simulations capture 3D ground motion phenomena on a regional scale, while the 1D nonlinear site response, which is informed by detailed site-specific soil characterization data, can capture site effects more rigorously. Simulations of 11 moderate-to-large earthquakes from the 2010-2011 Canterbury Earthquake Sequence (CES) at 20 strong motion stations (SMS) were used to validate simulations with observed ground motions. The predictions were compared to those from an empirically-based ground motion model (GMM), and from 3D simulations with simplified VS30- based site effects modelling. By comparing all predictions to observations at seismic recording stations, it was found that the 3D physics-based simulations can predict ground motions with comparable bias and uncertainty as the GMM, albeit, with significantly lower bias at long periods. Additionally, the explicit modelling of nonlinear site-response improves predictions significantly compared to the simplified VS30-based approach for soft-soil or atypical sites that exhibit exceptionally strong site effects. A method to account for the spatial variability of soils and wave scattering in 2D site response analyses was developed and validated against a database of vertical array sites in California. The inputs required to run the 2D analyses are nominally the same as those required for 1D analyses (except for spatial correlation parameters), enabling easier adoption in practice. The first step was to create the platform and workflow, and to perform a sensitivity study involving 5,400 2D model realizations to investigate the influence of random field input parameters on wave scattering and site response. Boundary conditions were carefully assessed to understand their effect on the modelled response and select appropriate assumptions for use on a 2D model with lateral heterogeneities. Multiple ground-motion intensity measures (IMs) were analyzed to quantify the influence from random field input parameters and boundary conditions. It was found that this method is capable of scattering seismic waves and creating spatially-varying ground motions at the ground surface. The redistribution of ground-motion energy across wider frequency bands, and the scattering attenuation of high-frequency waves in 2D analyses, resemble features observed in empirical transfer functions (ETFs) computed in other studies. The developed 2D method was subsequently extended to more complicated multi-layer soil profiles and applied to a database of 21 vertical array sites in California to test its appropriate- ness for future predictions. Again, different boundary condition and input motion assumptions were explored to extend the method to the in-situ conditions of a vertical array (with a sensor embedded in the soil). ETFs were compared to theoretical transfer functions (TTFs) from conventional 1D analyses and 2D analyses with heterogeneity. Residuals of transfer-function- based IMs, and IMs of surface ground motions, were also used as validation metrics. The spatial variability of transfer-function-based IMs was estimated from 2D models and compared to the event-to-event variability from ETFs. This method was found capable of significantly improving predictions of median ETF amplification factors, especially for sites that display higher event-to-event variability. For sites that are well represented by 1D methods, the 2D approach can underpredict amplification factors at higher modes, suggesting that the level of heterogeneity may be over-represented by the 2D random field models used in this study.

Research papers, University of Canterbury Library

The Amuri Earthquake of September 1, 1888 (magnitude M = 6.5 to 6.8) occurred on the Hope River Segment of the Hope Fault west of Hanmer Plains. The earthquake was felt strongly in North Canterbury and North Westland and caused considerable property damage and landsliding in the Lower Hope Valley. However, damage reports and the spatial distribution of felt intensities emphasize extreme variations in seismic effects over short distances, probably due to topographic focusing and local ground conditions. Significant variations in lateral fault displacement occurred at secondary fault segment boundaries (side-steps and bends in the fault trace) during the 1888 earthquake. This historical spatial variation in lateral slip is matched by the Late Quaternary geomorphic distribution of slip on the Hope River Segment of the Hope Fault. Trenching studies at two sites on the Hope Fault have also identified evidence for five pre-historic earthquakes of similar magnitude to the 1888 earthquake and an average recurrence interval of 134 ± 27 years between events. Magnitude estimates for the 1888 earthquake are combined with a. strong ground motion attenuation expression to provide an estimate of potential ground accelerations in Amuri District during-future earthquakes on the Hope River Segment of the Hope Fault. The predicted acceleration response on bedrock sites within 20 km of the epicentral region is between 0.23 g and 0.34 g. The close match between the historic, inferred pre-historic and geomorphic distribution of lateral slip indicates that secondary fault segmentation exerts a strong structural control on rupture propagation and the expression of fault displacement at the surface. In basement rocks at depth the spatial variations in slip are inferred to be distributed within zones of pervasive cataclastic shear, on either side of the fault segment boundaries. The large variations in surface displacement across fault segment boundaries means that one must know the geometry of the fault in order to evaluate slip-rates calculated from individual locations. The average Late Quaternary slip-rate on the Hope Fault at Glynn Wye Station is between 15.5 mm/yr and 18.25 mm/yr and the rate on the subsidiary Kakapo Fault is between 5.0 mm/yr and 7.5 mm/yr. These rates have been determined from sites which are relatively free of structural complication.

Research papers, University of Canterbury Library

Introduction This poster presents the inferred initial performance and recovery of the water supply network of Christchurch following the 22 February 2011 Mw 6.2 earthquake. Results are presented in a geospatial and temporal fashion. This work strengthens the current understanding of the restoration of such a system after a disaster and quantifies the losses caused by this earthquake in respect with the Christchurch community. Figure 1 presents the topology of the water supply network as well as the spatial distribution of the buildings and their use.

Research papers, University of Canterbury Library

This paper summarizes the development of a high-resolution surficial shear wave velocity model based on the combination of the large high-spatial-density database of cone penetration test (CPT) logs in and around Christchurch, New Zealand and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. This near-surface shear wave velocity model has applications for site characterization efforts via the development of maps of time-averaged shear wave velocities over specific depths, as well as use in site response analysis and ground motion simulation.

Research papers, The University of Auckland Library

Critical infrastructure networks are highly relied on by society such that any disruption to service can have major social and economic implications. Furthermore, these networks are becoming increasingly dependent on each other for normal operation such that an outage or asset failure in one system can easily propagate and cascade across others resulting in widespread disruptions in terms of both magnitude and spatial reach. It is the vulnerability of these networks to disruptions and the corresponding complexities in recovery processes which provide direction to this research. This thesis comprises studies contributing to two areas (i) the modelling of national scale in-terdependent infrastructure systems undergoing major disruptions, and (ii) the tracking and quantification of infrastructure network recovery trajectories following major disruptions. Firstly, methods are presented for identifying nationally significant systemic vulnerabilities and incorporating expert knowledge into the quantification of infrastructure interdependency mod-elling and simulation. With application to the interdependent infrastructures networks across New Zealand, the magnitudes and spatial extents of disruption are investigated. Results high-light the importance in considering interdependencies when assessing disruptive risks and vul-nerabilities in disaster planning applications and prioritising investment decisions for enhancing resilience of national networks. Infrastructure dependencies are further studied in the context of recovery from major disruptions through the analysis of curves measuring network functionality over time. Continued studies into the properties of recovery curves across a database of global natural disasters produce statistical models for predicting the trajectory and expected recovery times. Finally, the use of connectivity based metrics for quantifying infrastructure system functionality during recovery are considered with a case study application to the Christchurch Earthquake (February 22, 2011) wastewater network response.

Research papers, University of Canterbury Library

Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.

Research papers, University of Canterbury Library

This paper summarizes the development of a region-wide surficial shear wave velocity model based on the combination of the large high-spatial-density database of cone penetration test (CPT) logs in and around Christchurch, New Zealand and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. The ongoing development of this near-surface shear wave velocity model has applications for site characterization efforts via the development of maps of time-averaged shear wave velocities over specific depths, and the identification of regional similarities and differences in soil shear stiffness.

Research papers, University of Canterbury Library

This report summarizes the development of a region-wide surficial soil shear wave velocity (Vs ) model based on the unique combination of a large high-spatial-density database of cone penetration test (CPT) logs in the greater Christchurch urban area (> 15, 000 logs as of 1 February 2014) and the Christchurch-specific empirical correlation between soil Vs and CPT data developed by McGann et al. [1, 2]. This model has applications for site characterization efforts via maps of time-averaged Vs over specific depths (e.g. Vs30, Vs10), and for numerical modeling efforts via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin [3] currently being developed for the purpose of broadband ground motion simulation. The general development of these region-wide near-surface Vs models includes the following general phases, with each discussed in separate chapters of this report. • An evaluation of the available CPT dataset for suitability, and the definition of other datasets and assumptions necessary to characterize the surficial sediments of the region to 30 m depth. • The development of time-averaged shear wave velocity (Vsz) surfaces for the Christchurch area from the adopted CPT dataset (and supplementary data/assumptions) using spatial interpolation. The Vsz surfaces are used to explore the characteristics of the near-surface soils in the regions and are shown to correspond well with known features of the local geology, the historical ecosystems of the area, and observations made following the 2010- 2011 Canterbury earthquakes. • A detailed analysis of the Vs profiles in eight subregions of Christchurch is performed to assess the variablity in the soil profiles for regions with similar Vsz values and to assess Vsz as a predictive metric for local site response. It is shown that the distrubution of soil shear wave velocity in the Christchurch regions is highly variable both spatially (horizontally) and with depth (vertically) due to the varied geological histories for different parts of the area, and the highly stratified nature of the nearsurface deposits. This variability is not considered to be greatly significant in terms of current simplified site classification systems; based on computed Vs30 values, all considered regions can be categorized as NEHRP sites class D (180 < Vs < 360 m/s) or E (Vs < 180 m/s), however, detailed analysis of the shear wave velocity profiles in different subregions of Christchurch show that the expected surficial site response can vary quite a bit across the region despite the relative similarity in Vs30

Research papers, University of Canterbury Library

The Covid-19 pandemic has brought to the foreground the importance of social connectedness for wellbeing, at the individual, community and societal level. Within the context of the local community, pro-connection facilities are fundamental to foster community development, resilience and public health. Through identifying the gap in social connectedness literature for Māori, this has created space for new opportunities and to reflect on what is already occurring in Ōtautahi. It is well documented that Māori experience unequal societal impacts across all health outcomes. Therefore, narrowing the inequities between Māori and non-Māori across a spectrum of dimensions is a priority. Evaluating the #WellconnectedNZ project, which explores the intersections between social connection and wellbeing is one way to trigger these conversations. This was achieved by curating a dissimilar set of community pro-connection facilities and organizing them into a Geographic Information System (GIS). Which firstly involved, the collecting and processing of raw data, followed by spatial analysis through creating maps, this highlighted the alignment between the distribution of places, population and social data. Secondly, statistical analysis focusing on the relationship between deprivation and accessibility. Finally, semi-structured interviews providing perceptions of community experience. This study describes findings following a kaupapa Māori research approach. Results demonstrated that, in general some meshblocks in Ōtautahi benefit from a high level of accessibility to pro-connection facilities; but with an urban-rural gradient (as is expected, further from the central business district (CBD) are less facilities). Additionally, more-deprived meshblocks in the Southern and Eastern suburbs of Christchurch have poorer accessibility, suggesting underlying social and spatial inequalities, likely exacerbated by Covid-19 and the Christchurch earthquakes. In this context, it is timely to (re)consider pro-connection places and their role in the development of social infrastructure for connected communities, in the community facility planning space. ‘We are all interwoven, we just need to make better connections’.

Research papers, University of Canterbury Library

As a global phenomenon, many cities are undergoing urban renewal to accommodate rapid growth in urban population. However, urban renewal can struggle to balance social, economic, and environmental outcomes, whereby economic outcomes are often primarily considered by developers. This has important implications for urban forests, which have previously been shown to be negatively affected by development activities. Urban forests serve the purpose of providing ecosystem services and thus are beneficial to human wellbeing. Better understanding the effect of urban renewal on city trees may help improve urban forest outcomes via effective management and policy strategies, thereby maximising ecosystem service provision and human wellbeing. Though the relationship between certain aspects of development and urban forests has received consideration in previous literature, little research has focused on how the complete property redevelopment cycle affects urban forest dynamics over time. This research provides an opportunity to gain a comprehensive understanding of the effect of residential property redevelopment on urban forest dynamics, at a range of spatial scales, in Christchurch, New Zealand following a series of major earthquakes which occurred in 2010 – 2011. One consequence of the earthquakes is the redevelopment of thousands of properties over a relatively short time-frame. The research quantifies changes in canopy cover city-wide, as well as, tree removal, retention, and planting on individual residential properties. Moreover, the research identifies the underlying reasons for these dynamics, by exploring the roles of socio-economic and demographic factors, the spatial relationships between trees and other infrastructure, and finally, the attitudes of residential property owners. To quantify the effect of property redevelopment on canopy cover change in Christchurch, this research delineated tree canopy cover city-wide in 2011 and again in 2015. An object-based image analysis (OBIA) technique was applied to aerial imagery and LiDAR data acquired at both time steps, in order to estimate city-wide canopy cover for 2011 and 2015. Changes in tree canopy cover between 2011 and 2015 were then spatially quantified. Tree canopy cover change was also calculated for all meshblocks (a relatively fine-scale geographic boundary) in Christchurch. The results show a relatively small magnitude of tree canopy cover loss, city-wide, from 10.8% to 10.3% between 2011 and 2015, but a statistically significant change in mean tree canopy cover across all the meshblocks. Tree canopy cover losses were more likely to occur in meshblocks containing properties that underwent a complete redevelopment cycle, but the loss was insensitive to the density of redevelopment within meshblocks. To explore property-scale individual tree dynamics, a mixed-methods approach was used, combining questionnaire data and remote sensing analysis. A mail-based questionnaire was delivered to residential properties to collect resident and household data; 450 residential properties (321 redeveloped, 129 non- redeveloped) returned valid questionnaires and were identified as analysis subjects. Subsequently, 2,422 tree removals and 4,544 tree retentions were identified within the 450 properties; this was done by manually delineating individual tree crowns, based on aerial imagery and LiDAR data, and visually comparing the presence or absence of these trees between 2011 and 2015. The tree removal rate on redeveloped properties (44.0%) was over three times greater than on non-redeveloped properties (13.5%) and the average canopy cover loss on redeveloped properties (52.2%) was significantly greater than on non-redeveloped properties (18.8%). A classification tree (CT) analysis was used to model individual tree dynamics (i.e. tree removal, tree retention) and candidate explanatory variables (i.e. resident and household, economic, land cover, and spatial variables). The results indicate that the model including land cover, spatial, and economic variables had the best predicting ability for individual tree dynamics (accuracy = 73.4%). Relatively small trees were more likely to be removed, while trees with large crowns were more likely to be retained. Trees were most likely to be removed from redeveloped properties with capital values lower than NZ$1,060,000 if they were within 1.4 m of the boundary of a redeveloped building. Conversely, trees were most likely to be retained if they were on a property that was not redeveloped. The analysis suggested that the resident and household factors included as potential explanatory variables did not influence tree removal or retention. To conduct a further exploration of the relationship between resident attitudes and actions towards trees on redeveloped versus non-redeveloped properties, this research also asked the landowners from the 450 properties that returned mail questionnaires to indicate their attitudes towards tree management (i.e. tree removal, tree retention, and tree planting) on their properties. The results show that residents from redeveloped properties were more likely to remove and/or plant trees, while residents from non- redeveloped properties were more likely to retain existing trees. A principal component analysis (PCA) was used to explore resident attitudes towards tree management. The results of the PCA show that residents identified ecosystem disservices (e.g. leaf litter, root damage to infrastructure) as common reasons for tree removal; however, they also noted ecosystem services as important reasons for both tree planting and tree retention on their properties. Moreover, the reasons for tree removal and tree planting varied based on whether residents’ property had been redeveloped. Most tree removal occurred on redeveloped properties because trees were in conflict with redevelopment, but occurred on non- redeveloped properties because of perceived poor tree health. Residents from redeveloped properties were more likely to plant trees due to being aesthetically pleasing or to replace trees removed during redevelopment. Overall, this research adds to, and complements, the existing literature on the effects of residential property redevelopment on urban forest dynamics. The findings of this research provide empirical support for developing specific legislation or policies about urban forest management during residential property redevelopment. The results also imply that urban foresters should enhance public education on the ecosystem services provided by urban forests and thus minimise the potential for tree removal when undertaking property redevelopment.

Research papers, University of Canterbury Library

Hybrid broadband simulation methods typically compute high-frequency portion of ground-motions using a simplified-physics approach (commonly known as “stochastic method”) using the same 1D velocity profile, anelastic attenuation profile and site-attenuation (κ0) value for all sites. However, these parameters relating to Earth structure are known to vary spatially. In this study we modify this conventional approach for high-frequency ground-shaking by using site-specific input parameters (referred to as “site-specific”) and analyze improvements over using same parameters for all sites (referred to as “generic”). First, we theoretically understand how different 1D velocity profiles, anelastic attenuation profiles and site-attenuation (κ0) values affects the Fourier Acceleration Spectrum (FAS). Then, we apply site-specific method to simulate 10 events from the 2010-2011 Canterbury earthquake sequence to assess performance against the generic approach in predicting recorded ground-motions. Our initial results suggest that the site-specific method yields a lower simulation standard deviation than generic case.

Research papers, University of Canterbury Library

essential systems upon which the well-being and functioning of societies depend. They deliver a service or a good to the population using a network, a combination of spatially-distributed links and nodes. As they are interconnected, network elements’ functionality is also interdependent. In case of a failure of one component, many others could be momentarily brought out-of-service. Further problems arise for buried infrastructure when it comes to buried infrastructure in earthquake and liquefaction-prone areas for the following reasons: • Technically more demanding inspections than those required for surface horizontal infrastructure • Infrastructure subject to both permanent ground displacement and transient ground deformation • Increase in network maintenance costs (i.e. deterioration due to ageing material and seismic hazard) These challenges suggest careful studies on network resilience will yield significant benefits. For these reasons, the potable water network of Christchurch city (Figure 1) has been selected for its well-characterized topology and its extensive repair dataset.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of topics in the physics-based broadband ground motion simulation, with a focus on New Zealand applications. In particular the following topics are addressed: the methodology and computational implementation of a New Zealand Velocity Model for broadband ground motion simulation; generalised parametric functions and spatial correlations for seismic velocities in the Canterbury, New Zealand region from surface-wave-based site characterisation; and ground motion simulations of Hope Fault earthquakes. The paragraphs below outline each contribution in more detail. A necessary component in physics-based ground motion simulation is a 3D model which details the seismic velocities in the region of interest. Here a velocity model construction methodology, its computational implementation, and application in the construction of a New Zealand velocity model for use in physics-based broadband ground motion simulation are presented. The methodology utilises multiple datasets spanning different length scales, which is enabled via the use of modular sub-regions, geologic surfaces, and parametric representations of crustal velocity. A number of efficiency-related workflows to decrease the overall computational construction time are employed, while maintaining the flexibility and extensibility to incorporate additional datasets and re- fined velocity parameterizations as they become available. The model comprises explicit representations of the Canterbury, Wellington, Nelson-Tasman, Kaikoura, Marlborough, Waiau, Hanmer and Cheviot sedimentary basins embedded within a regional travel-time tomography-based velocity model for the shallow crust and provides the means to conduct ground motion simulations throughout New Zealand for the first time. Recently developed deep shear-wave velocity profiles in Canterbury enabled models that better characterise the velocity structure within geologic layers of the Canterbury sedimentary basin to be developed. Here the development of depth- and Vs30-dependent para-metric velocity and spatial correlation models to characterise shear-wave velocities within the geologic layers of the Canterbury sedimentary basin are presented. The models utilise data from 22 shear-wave velocity profiles of up to 2.5km depth (derived from surface wave analysis) juxtaposed with models which detail the three-dimensional structure of the geologic formations in the Canterbury sedimentary basin. Parametric velocity equations are presented for Fine Grained Sediments, Gravels, and Tertiary layer groupings. Spatial correlations were developed and applied to generate three-dimensional stochastic velocity perturbations. Collectively, these models enable seismic velocities to be realistically represented for applications such as 3D ground motion and site response simulations. Lastly the New Zealand velocity model is applied to simulate ground motions for a Mw7.51 rupture of the Hope Fault using a physics-based simulation methodology and a 3D crustal velocity model of New Zealand. The simulation methodology was validated for use in the region through comparison with observations for a suite of historic small magnitude earthquakes located proximal to the Hope Fault. Simulations are compared with conventionally utilised empirical ground motion models, with simulated peak ground velocities being notably higher in regions with modelled sedimentary basins. A sensitivity analysis was undertaken where the source characteristics of magnitude, stress parameter, hypocentre location and kinematic slip distribution were varied and an analysis of their effect on ground motion intensities is presented. It was found that the magnitude and stress parameter strongly influenced long and short period ground motion amplitudes, respectively. Ground motion intensities for the Hope Fault scenario are compared with the 2016 Kaikoura Mw7.8 earthquake, it was found that the Kaikoura earthquake produced stronger motions along the eastern South Island, while the Hope Fault scenario resulted in stronger motions immediately West of the near-fault region. The simulated ground motions for this scenario complement prior empirically-based estimates and are informative for mitigation and emergency planning purposes.

Research papers, University of Canterbury Library

Christchurch City Council (Council) is undertaking the Land Drainage Recovery Programme in order to assess the effects of the earthquakes on flood risk to Christchurch. In the course of these investigations it has become better understood that floodplain management should be considered in a multi natural hazards context. Council have therefore engaged the Jacobs, Beca, University of Canterbury, and HR Wallingford project team to investigate the multihazards in eastern areas of Christchurch and develop flood management options which also consider other natural hazards in that context (i.e. how other hazards contribute to flooding both through temporal and spatial coincidence). The study has three stages:  Stage 1 Gap Analysis – assessment of information known, identification of gaps and studies required to fill the gaps.  Stage 2 Hazard Studies – a gap filling stage with the studies identified in Stage 1.  Stage 3 Collating, Optioneering and Reporting – development of options to manage flood risk. This present report is to document findings of Stage 1 and recommends the studies that should be completed for Stage 2. It has also been important to consider how Stage 3 would be delivered and the gaps are prioritised to provide for this. The level of information available and hazards to consider is extensive; requiring this report to be made up of five parts each identifying individual gaps. A process of identifying information for individual hazards in Christchurch has been undertaken and documented (Part 1) followed by assessing the spatial co-location (Part 2) and probabilistic presence of multi hazards using available information. Part 3 considers multi hazard presence both as a temporal coincidence (e.g. an earthquake and flood occurring at one time) and as a cascade sequence (e.g. earthquake followed by a flood at some point in the future). Council have already undertaken a number of options studies for managing flood risk and these are documented in Part 4. Finally Part 5 provides the Gap Analysis Summary and Recommendations to Council. The key findings of Stage 1 gap analysis are: - The spatial analysis showed eastern Christchurch has a large number of hazards present with only 20% of the study area not being affected by any of the hazards mapped. Over 20% of the study area is exposed to four or more hazards at the frequencies and data available. - The majority of the Residential Red Zone is strongly exposed to multiple hazards, with 86% of the area being exposed to 4 or more hazards, and 24% being exposed to 6 or more hazards. - A wide number of gaps are present; however, prioritisation needs to consider the level of benefit and risks associated with not undertaking the studies. In light of this 10 studies ranging in scale are recommended to be done for the project team to complete the present scope of Stage 3. - Stage 3 will need to consider a number of engineering options to address hazards and compare with policy options; however, Council have not established a consistent policy on managed retreat that can be applied for equal comparison; without which substantial assumptions are required. We recommend Council undertake a study to define a managed retreat framework as an option for the city. - In undertaking Stage 1 with floodplain management as the focal point in a multi hazards context we have identified that Stage 3 requires consideration of options in the context of economics, implementation and residual risk. Presently the scope of work will provide a level of definition for floodplain options; however, this will not be at equal levels of detail for other hazard management options. Therefore, we recommend Council considers undertaking other studies with those key hazards (e.g. Coastal Hazards) as a focal point and identifies the engineering options to address such hazards. Doing so will provide equal levels of information for Council to make an informed and defendable decision on which options are progressed following Stage 3.

Research papers, Victoria University of Wellington

It is well established that urban green areas provide a wide range of social, aesthetic, environmental and economic benefits. The importance of urban green spaces has been known for decades; however the relationship between urban livability and green areas, as incorporated in overall urban green structure, has become the focus of international studies during the last 10 to 15 years. The spatial structure of green space systems has important consequences for urban form; configuring urban resources, controlling urban size, improving ecological quality of urban areas and preventing or mitigating natural disasters. However, in the field of architecture or urban design, very little work has been done to investigate the potential for built form to define and differentiate the edge to a green corridor ... This thesis therefore poses the hypothesis that architecture and urban design critically mediate between city and green corridor, through intensification and definition of the built edge, as a means of contributing to an ecological city form.