Search

found 96 results

Research papers, University of Canterbury Library

Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.

Research papers, University of Canterbury Library

A preliminary case study assessing the seismic sustainability of two reinforced concrete structures, a frame structure and a wall structure, was conducted to determine which structural system is more seismically sustainable. The two structures were designed to the same standards and were assumed to be located in Christchurch, New Zealand. A component-based probabilistic seismic loss assessment, considering direct losses only, was conducted for two ground motion records, regarded to approximately represent a 1 in 500 year earthquake event and a 1 in 2500 year earthquake event, respectively. It is shown that the wall structure results in lower direct losses than the frame structure in the less severe ground motion scenario. However, in the more severe ground motion scenario, the frame structure results in lower direct losses. Hence, this study demonstrates that which structural system has the lower direct losses depends on the ground motion intensity level.

Research papers, University of Canterbury Library

The need for a simple but rigorous seismic assessment procedure to predict damage to reinforced concrete buildings during a seismic event has been highlighted following the Canterbury Earthquake sequence. Such simplified assessment procedure, applied to individual structure or large building inventory, should not only have low requirement in terms of input information and involve straightforward analyses, but also should be capable to provide reliable predictive results within short timeframe. This research provides a general overview and critical comparison of alternative simplified assessment procedures adopted in NZSEE 2006 Guidelines (Assessment and Improvement of the Structural Performance of Buildings in Earthquakes), ASCE 41-13 (Seismic Evaluation and Retrofit of Existing Buildings), and EN: 1998-3: 2005 (Assessment and Retrofitting of Buildings). Particular focus is given to the evaluation of the capability of Simplified Lateral Mechanism Analysis (SLaMa), which is an analytical pushover method adopted in NZSEE 2006 Guidelines. The predictive results from SLaMa are compared to damages observed for a set of reinforced concrete buildings in Christchurch, as well as the results from more detailed assessment procedure based on numerical modelling. This research also suggests improvements to SLaMa, together with validation of the improvements, to include assessment of local mechanism by strength hierarchy evaluation, as well as to develop assessment of global mechanism including post-yield mechanism sequence based on local mechanism.

Research papers, University of Canterbury Library

There is an increasing recognition that the seismic performance of buildings will be affected by the behaviour of both structural and non-structural elements. In light of this, work has been progressing at the University of Canterbury to develop guidelines for the seismic assessment of commercial glazing systems. This paper reviews the seismic assessment guidelines prescribed in Section C10 of the MBIE building assessment guidelines. Subsequently, the C10 approach is used to assess the drift capacity of a number of glazing units recently tested at the University of Canterbury. Comparing the predicted and observed drift capacities, it would appear that the C10 guidelines may lead to nonconservative estimates of drift capacity. Furthermore, the experimental results indicate that watertightness may be lost at very low drift demands, suggesting that guidance for the assessment of serviceability performance would also be beneficial. As such, it is proposed that improved guidance be provided to assist engineers in considering the possible impact that glazing could have on the structural response of a building in a large earthquake.

Research papers, University of Canterbury Library

The University of Canterbury has initialized a research program focusing on the seismic sustainability of structures. As part of this program, the relative seismic sustainability of various structures will be assessed to identify those with the highest sustainability for the Christchurch rebuild and general use in New Zealand. This preliminary case study assesses one reinforced concrete (RC) frame structure and one RC wall structure. The scenario loss is evaluated for two earthquake records considering direct losses only in order to explain and illustrate the methodology.

Research papers, University of Canterbury Library

This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.

Research papers, University of Canterbury Library

This report presents the simplified seismic assessment of a case study reinforced concrete (RC) building following the newly developed and refined NZSEE/MBIE guidelines on seismic assessment (NZSEE/MBIE, semi-final draft 26 October 2016). After an overview of the step-by-step ‘diagnostic’ process, including an holistic and qualitative description of the expected vulnerabilities and of the assessment strategy/methodology, focus is given, whilst not limited, to the implementation of a Detailed Seismic Assessment (DSA) (NZSEE/MBIE, 2016c). The DSA is intended to provide a more reliable and consistent outcome than what can be provided by an initial seismic assessment (ISA). In fact, while the Initial Seismic Assessment (ISA), of which the Initial Evaluation Procedure is only a part of, is the more natural and still recommended first step in the overall assessment process, it is mostly intended to be a coarse evaluation involving as few resources as reasonably possible. It is thus expected that an ISA will be followed by a Detailed Seismic Assessment (DSA) not only where the threshold of 33%NBS is not achieved but also where important decisions are intended that are reliant on the seismic status of the building. The use of %NBS (% New Building Standard) as a capacity/demand ratio to describe the result of the seismic assessment at all levels of assessment procedure (ISA through to DSA) is deliberate by the NZSEE/MBIE guidelines (Part A) (NZSEE/MBIE 2016a). The rating for the building needs only be based on the lowest level of assessment that is warranted for the particular circumstances. Discussion on how the %NBS rating is to be determined can be found in Section A3.3 (NZSEE/MBIE 2016a), and, more specifically, in Part B for the ISA (NZSEE/MBIE 2016b) and Part C for the DSA (NZSEE/MBIE 2016c). As per other international approaches, the DSA can be based on several analysis procedures to assess the structural behaviour (linear, nonlinear, static or dynamic, force or displacement-based). The significantly revamped NZSEE 2016 Seismic Assessment Guidelines strongly recommend the use of an analytical (basically ‘by hand’) method, referred to the Simple Lateral Mechanism Analysis (SLaMA) as a first phase of any other numerically-based analysis method. Significant effort has thus been dedicated to provide within the NZSEE 2016 guidelines (NZSEE/MBIE 2016c) a step-by-step description of the procedure, either in general terms (Chapter 2) or with specific reference to Reinforced Concrete Buildings (Chapter 5). More specifically, extract from the guidelines, NZSEE “recommend using the Simple Lateral Mechanism Analysis (SLaMA) procedure as a first step in any assessment. While SLaMA is essentially an analysis technique, it enables assessors to investigate (and present in a simple form) the potential contribution and interaction of a number of structural elements and their likely effect on the building’s global capacity. In some cases, the results of a SLaMA will only be indicative. However, it is expected that its use should help assessors achieve a more reliable outcome than if they only carried out a detailed analysis, especially if that analysis is limited to the elastic range For complex structural systems, a 3D dynamic analysis may be necessary to supplement the simplified nonlinear Simple Lateral Mechanism Analysis (SLaMA).” This report presents the development of a full design example for the the implementation of the SLaMA method on a case study buildings and a validation/comparison with a non-linear static (pushover) analysis. The step-by-step-procedure, summarized in Figure 1, will be herein demonstrated from a component level (beams, columns, wall elements) to a subassembly level (hierarchy of strength in a beam-column joint) and to a system level (frame, C-Wall) assuming initially a 2D behaviour of the key structural system, and then incorporating a by-hand 3D behaviour (torsional effects).

Research papers, University of Canterbury Library

Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.

Research papers, University of Canterbury Library

Nowadays the telecommunication systems’ performance has a substantial impact on our lifestyle. Their operationality becomes even more substantial in a post-disaster scenario when these services are used in civil protection and emergency plans, as well as for the restoration of all the other critical infrastructure. Despite the relevance of loss of functionality of telecommunication networks on seismic resilience, studies on their performance assessment are few in the literature. The telecommunication system is a distributed network made up of several components (i.e. ducts, utility holes, cabinets, major and local exchanges). Given that these networks cover a large geographical area, they can be easily subjected to the effects of a seismic event, either the ground shaking itself, or co-seismic events such as liquefaction and landslides. In this paper, an analysis of the data collected after the 2010-2011 Canterbury Earthquake Sequence (CES) and the 2016 Kaikoura Earthquake in New Zealand is conducted. Analysing these data, information gaps are critically identified regarding physical and functional failures of the telecommunication components, the timeline of repair/reconstruction activities and service recovery, geotechnical tests and land planning maps. Indeed, if these missing data were presented, they could aid the assessment of the seismic resilience. Thus, practical improvements in the post-disaster collection from both a network and organisational viewpoints are proposed through consultation of national and international researchers and highly experienced asset managers from Chorus. Finally, an outline of future studies which could guide towards a more resilient seismic performance of the telecommunication network is presented.

Research papers, University of Canterbury Library

Reinforced concrete structures designed in pre-1970s are vulnerable under earthquakes due to lack of seismic detailing to provide adequate ductility. Typical deficiencies of pre-1970s reinforced concrete structures are (a) use of plain bars as longitudinal reinforcement, (b) inadequate anchorage of beam longitudinal reinforcement in the column (particularly exterior column), (c) lack of joint transverse reinforcement if any, (d) lapped splices located just above joint, and (e) low concrete strength. Furthermore, the use of infill walls is a controversial issue because it can help to provide additional stiffness to the structure on the positive side and on the negative side it can increase the possibility of soft-storey mechanisms if it is distributed irregularly. Experimental research to investigate the possible seismic behaviour of pre-1970s reinforced concrete structures have been carried out in the past. However, there is still an absence of experimental tests on the 3-D response of existing beam-column joints under bi-directional cyclic loading, such as corner joints. As part of the research work herein presented, a series of experimental tests on beam-column subassemblies with typical detailing of pre-1970s buildings has been carried out to investigate the behaviour of existing reinforced concrete structures. Six two-third scale plane frame exterior beam-column joint subassemblies were constructed and tested under quasi-static cyclic loading in the Structural Laboratory of the University of Canterbury. The reinforcement detailing and beam dimension were varied to investigate their effect on the seismic behaviour. Four specimens were conventional deep beam-column joint, with two of them using deformed longitudinal bars and beam bars bent in to the joint and the two others using plain round longitudinal bars and beam bars with end hooks. The other two specimens were shallow beam-column joint, one with deformed longitudinal bars and beam bars bent in to the joint, the other with plain round longitudinal bars and beam bars with end hooks. All units had one transverse reinforcement in the joint. The results of the experimental tests indicated that conventional exterior beam-column joint with typical detailing of pre-1970s building would experience serious diagonal tension cracking in the joint panel under earthquake. The use of plain round bars with end hooks for beam longitudinal reinforcement results in more severe damage in the joint core when compared to the use of deformed bars for beam longitudinal reinforcement bent in to the joint, due to the combination of bar slips and concrete crushing. One interesting outcome is that the use of shallow beam in the exterior beam-column joint could avoid the joint cracking due to the beam size although the strength provided lower when compared with the use of deep beam with equal moment capacity. Therefore, taking into account the low strength and stiffness, shallow beam can be reintroduced as an alternative solution in design process. In addition, the presence of single transverse reinforcement in the joint core can provide additional confinement after the first crack occurred, thus delaying the strength degradation of the structure. Three two-third scale space frame corner beam-column joint subassemblies were also constructed to investigate the biaxial loading effect. Two specimens were deep-deep beam-corner column joint specimens and the other one was deep-shallow beam-corner column joint specimen. One deep-deep beam-corner column joint specimen was not using any transverse reinforcement in the joint core while the two other specimens were using one transverse reinforcement in the joint core. Plain round longitudinal bars were used for all units with hook anchorage for the beam bars. Results from the tests confirmed the evidences from earthquake damage observations with the exterior 3-D (corner) beam-column joint subjected to biaxial loading would have less strength and suffer higher damage in the joint area under earthquake. Furthermore, the joint shear relation in the two directions is calibrated from the results to provide better analysis. An analytical model was used to simulate the seismic behaviour of the joints with the help of Ruaumoko software. Alternative strength degradation curves corresponding to different reinforcement detailing of beam-column joint unit were proposed based on the test results.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

The aim of this report is to investigate the ductile performance of concrete tilt-up panels reinforced with cold-drawn mesh to improve the current seismic assessment procedure. The commercial impact of the project was also investigated. Engineering Advisory Group (EAG) guidelines state that a crack in a panel under face loading may be sufficient to fracture the mesh. The comments made by EAG regarding the performance of cold-drawn mesh may be interpreted as suggesting that assessment of such panels be conducted with a ductility of 1.0. Observations of tilt-up panel performance following the Christchurch earthquakes suggest that a ductility higher than μ=1.0 is likely to be appropriate for the response of panels to out-of-plane loading. An experimental test frame was designed to subject ten tilt-panel specimens to a cyclic quasi-static loading protocol. Rotation ductility, calculated from the force-displacement response from the test specimens, was found to range between 2.9 and 5.8. Correlation between tensile tests on 663L mesh, and data collected from instrumentation during testing confirmed that the mesh behaves as un-bonded over the pitch length of 150mm. Recommendation: Based on a moment-rotation assessment approach with an un-bonded length equal to the pitch of the mesh, a rotation ductility of μ=2.5 appears to be appropriate for the seismic assessment of panels reinforced with cold-drawn mesh.

Research papers, The University of Auckland Library

Territorial authorities in New Zealand are responding to regulatory and market forces in the wake of the 2011 Christchurch earthquake to assess and retrofit buildings determined to be particularly vulnerable to earthquakes. Pending legislation may shorten the permissible timeframes on such seismic improvement programmes, but Auckland Council’s Property Department is already engaging in a proactive effort to assess its portfolio of approximately 3500 buildings, prioritise these assets for retrofit, and forecast construction costs for improvements. Within the programme structure, the following varied and often competing factors must be accommodated: * The council’s legal, fiscal, and ethical obligations to the people of Auckland per building regulations, health and safety protocols, and economic growth and urban development planning strategies; * The council’s functional priorities for service delivery; * Varied and numerous stakeholders across the largest territorial region in New Zealand in both population and landmass; * Heritage preservation and community and cultural values; and * Auckland’s prominent economic role in New Zealand’s economy which requires Auckland’s continued economic production post-disaster. Identifying those buildings most at risk to an earthquake in such a large and varied portfolio has warranted a rapid field assessment programme supplemented by strategically chosen detailed assessments. Furthermore, Auckland Council will benefit greatly in time and resources by choosing retrofit solutions, techniques, and technologies applicable to a large number of buildings with similar configurations and materials. From a research perspective, the number and variety of buildings within the council’s property portfolio will provide valuable data for risk modellers on building typologies in Auckland, which are expected to be fairly representative of the New Zealand building stock as a whole.

Research papers, The University of Auckland Library

Following the 2010–2011 Canterbury earthquakes, a renewed focus has been directed across New Zealand to the hazard posed by the country‘s earthquake-vulnerable buildings, namely unreinforced masonry (URM) and reinforced concrete (RC) buildings with potentially nonductile components that have historically performed poorly in large earthquakes. The research reported herein was pursued with the intention of addressing several recommendations made by the Canterbury Earthquakes Royal Commission of Inquiry which were classified into the following general categories:  Identification and provisional vulnerability assessment of URM and RC buildings and building components;  Testing, assessment, and retrofitting of URM walls loaded out-of-plane, with a particular focus on highly vulnerable URM cavity walls;  Testing and assessment of RC frame components, especially those with presumably non-ductile reinforcement detailing;  Portfolio management considering risks, regulations, and potential costs for a portfolio that includes several potentially earthquake-vulnerable buildings; and  Ongoing investigations and proposed research needs. While the findings from the reported research have implications for seismic assessments of buildings across New Zealand and elsewhere, an emphasis was placed on Auckland given this research program‘s partnership with the Auckland Council, the Auckland region accounting for about a third each of the country‘s population and economic production, and the number and variety of buildings within the Auckland building stock. An additional evaluation of a historic building stock was carried out for select buildings located in Hawke‘s Bay, and additional experimental testing was carried out for select buildings located in Hawke‘s Bay and Christchurch.

Research papers, The University of Auckland Library

The paper proposes a simple method for quick post-earthquake assessment of damage and condition of a stock of bridges in a transportation network using seismic data recorded by a strong motion array. The first part of the paper is concerned with using existing free field strong motion recorders to predict peak ground acceleration (PGA) at an arbitrary bridge site. Two methods are developed using artificial neural networks (a single network and a committee of neural networks) considering influential parameters, such as seismic magnitude, hypocentral depth and epicentral distance. The efficiency of the proposed method is explored using actual strong motion records from the devastating 2010 Darfield and 2011 Christchurch earthquakes in New Zealand. In the second part, two simple ideas are outlined how to infer the likely damage to a bridge using either the predicted PGA and seismic design spectrum, or a broader set of seismic metrics, structural parameters and damage indices.

Research papers, The University of Auckland Library

The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures. AM - Accepted Manuscript

Research papers, University of Canterbury Library

A wide range of reinforced concrete (RC) wall performance was observed following the 2010/2011 Canterbury earthquakes, with most walls performing as expected, but some exhibiting undesirable and unexpected damage and failure characteristics. A comprehensive research programme, funded by the Building Performance Branch of the New Zealand Ministry of Business, Innovation and Employment, and involving both numerical and experimental studies, was developed to investigate the unexpected damage observed in the earthquakes and provide recommendations for the design and assessment procedures for RC walls. In particular, the studies focused on the performance of lightly reinforced walls; precast walls and connections; ductile walls; walls subjected to bi-directional loading; and walls prone to out-of-plane instability. This paper summarises each research programme and provides practical recommendations for the design and assessment of RC walls based on key findings, including recommended changes to NZS 3101 and the NZ Seismic Assessment Guidelines.

Research papers, The University of Auckland Library

Utility managers are always looking for appropriate tools to estimate seismic damage in wastewater networks located in earthquake prone areas. Fragility curves, as an appropriate tool, are recommended for seismic vulnerability analysis of buried pipelines, including pressurised and unpressurised networks. Fragility curves are developed in pressurised networks mainly for water networks. Fragility curves are also recommended for seismic analysis in unpressurised networks. Applying fragility curves in unpressurised networks affects accuracy of seismic damage estimation. This study shows limitations of these curves in unpressurised networks. Multiple case study analysis was applied to demonstrate the limitations of the application of fragility curves in unpressurised networks in New Zealand. Four wastewater networks within New Zealand were selected as case studies and various fragility curves used for seismic damage estimation. Observed damage in unpressurised networks after the 2007 earthquake in Gisborne and the 2010 earthquake in Christchurch demonstrate the appropriateness of the applied fragility curves to New Zealand wastewater networks. This study shows that the application of fragility curves, which are developed from pressurised networks, cannot be accurately used for seismic damage assessment in unpressurised wastewater networks. This study demonstrated the effects of different parameters on seismic damage vulnerability of unpressurised networks.

Research papers, University of Canterbury Library

This paper presents the preliminary conclusions of the first stage of Wellington Case Study project (Regulating For Resilience in an Earthquake Vulnerable City) being undertaken by the Disaster Law Research Group at the University of Canterbury Law School. This research aims to map the current regulatory environment around improving the seismic resilience of the urban built environment. This work provides the basis for the second stage of the project which will map the regulatory tools onto the reality of the current building stock in Wellington. Using a socio-legal methodology, the current research examines the regulatory framework around seismic resilience for existing buildings in New Zealand, with a particularly focus on multi-storey in the Wellington CBD. The work focusses both on the operation and impact of the formal seismic regulatory tools open to public regulators (under the amended Building Act) as other non-seismic regulatory tools. As well as examining the formal regulatory frame, the work also provides an assessment of the interactions between other non-building acts (such as Health and Safety at Work Act 2015) on the requirements of seismic resilience. Other soft-law developments (particularly around informal building standards) are also examined. The final output of this work will presents this regulatory map in a clear and easily accessible manner and provide an assessment of the suitability of this at times confusing and patchy legal environment as Wellington moves towards becoming a resilient city. The final conclusion of this work will be used to specifically examine the ability of Wellington to make this transition under the current regulatory environment as phase two of the Wellington Case Study project.

Research papers, University of Canterbury Library

Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.

Research papers, University of Canterbury Library

Abstract This study provides a simplified methodology for pre-event data collection to support a faster and more accurate seismic loss estimation. Existing pre-event data collection frameworks are reviewed. Data gathered after the Canterbury earthquake sequences are analysed to evaluate the relative importance of different sources of building damage. Conclusions drawns are used to explore new approaches to conduct pre-event building assessment.

Research papers, University of Canterbury Library

In practice, several competing liquefaction evaluation procedures (LEPs) are used to compute factors of safety against soil liquefaction, often for use within a liquefaction potential index (LPI) framework to assess liquefaction hazard. At present, the influence of the selected LEP on the accuracy of LPI hazard assessment is unknown, and the need for LEP-specific calibrations of the LPI hazard scale has never been thoroughly investigated. Therefore, the aim of this study is to assess the efficacy of three CPT-based LEPs from the literature, operating within the LPI framework, for predicting the severity of liquefaction manifestation. Utilising more than 7000 liquefaction case studies from the 2010–2011 Canterbury (NZ) earthquake sequence, this study found that: (a) the relationship between liquefaction manifestation severity and computed LPI values is LEP-specific; (b) using a calibrated, LEP-specific hazard scale, the performance of the LPI models is essentially equivalent; and (c) the existing LPI framework has inherent limitations, resulting in inconsistent severity predictions against field observations for certain soil profiles, regardless of which LEP is used. It is unlikely that revisions of the LEPs will completely resolve these erroneous assessments. Rather, a revised index which more adequately accounts for the mechanics of liquefaction manifestation is needed.

Research papers, University of Canterbury Library

This research employs a deterministic seismic risk assessment methodology to assess the potential damage and loss at meshblock level in the Christchurch CBD and Mount Pleasant primarily due to building damage caused by earthquake ground shaking. Expected losses in terms of dollar value and casualties are calculated for two earthquake scenarios. Findings are based on: (1) data describing the earthquake ground shaking and microzonation effects; (2) an inventory of buildings by value, floor area, replacement value, occupancy and age; (3) damage ratios defining the performance of buildings as a function of earthquake intensity; (4) daytime and night-time population distribution data and (5) casualty functions defining casualty risk as a function of building damage. A GIS serves as a platform for collecting, storing and analyzing the original and the derived data. It also allows for easy display of input and output data, providing a critical functionality for communication of outcomes. The results of this study suggest that economic losses due to building damage in the Christchurch CBD and Mount Pleasant will possibly be in the order of $5.6 and $35.3 million in a magnitude 8.0 Alpine fault earthquake and a magnitude 7.0 Ashley fault earthquake respectively. Damage to non-residential buildings constitutes the vast majority of the economic loss. Casualty numbers are expected to be between 0 and 10.

Research papers, University of Canterbury Library

The latest two great earthquake sequences; 2010- 2011 Canterbury Earthquake and 2016 Kaikoura Earthquake, necessitate a better understanding of the New Zealand seismic hazard condition for new building design and detailed assessment of existing buildings. It is important to note, however, that the New Zealand seismic hazard map in NZS 1170.5.2004 is generalised in effort to cover all of New Zealand and limited to a earthquake database prior to 2001. This is “common” that site-specific studies typically provide spectral accelerations different to those shown on the national map (Z values in NZS 1170.5:2004); and sometimes even lower. Moreover, Section 5.2 of Module 1 of the Earthquake Geotechnical Engineering Practice series provide the guidelines to perform site- specific studies.

Research papers, The University of Auckland Library

Following the devastating 1931 Hawke's Bay earthquake, buildings in Napier and surrounding areas in the Hawke's Bay region were rebuilt in a comparatively homogenous structural and architectural style comprising the region's famous Art Deco stock. These interwar buildings are most often composed of reinforced concrete two-way space frames, and although they have comparatively ductile detailing for their date of construction, are often expected to be brittle, earthquake-prone buildings in preliminary seismic assessments. Furthermore, the likelihood of global collapse of an RC building during a design-level earthquake became an issue warranting particular attention following the collapse of multiple RC buildings in the February 22, 2011 Christchurch earthquake. Those who value the architectural heritage and future use of these iconic Art Deco buildings - including building owners, tenants, and city officials, among others - must consider how they can be best preserved and utilized functionally given the especially pressing implications of relevant safety, regulatory, and economic factors. This study was intended to provide information on the seismic hazard, geometric weaknesses, collapse hazards, material properties, structural detailing, empirically based vulnerability, and recommended analysis approaches particular to Art Deco buildings in Hawke's Bay as a resource for professional structural engineers tasked with seismic assessments and retrofit designs for these buildings. The observed satisfactory performance of similar low-rise, ostensibly brittle RC buildings in other earthquakes and the examination of the structural redundancy and expected column drift capacities in these buildings, led to the conclusion that the seismic capacity of these buildings is generally underrated in simple, force-based assessments.

Research papers, The University of Auckland Library

The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic response in as-built environment, which includes all the real physical properties of a structure under study and its surroundings. The recorded responses can be used for better understanding of behavior of structures by extracting their dynamic characteristics. It is significantly valuable to examine the behavior of buildings under different excitation scenarios. The trends in dynamic characteristics, such as modal frequencies and damping ratios, thus developed can provide quantitative data for the variations in the behavior of buildings. Moreover, such studies provide invaluable information for the development and calibration of realistic models for the prediction of seismic response of structures in model updating and structural health monitoring studies. This thesis comprises two parts. The first part presents an evaluation of seismic responses of two instrumented three storey RC buildings under a selection of 50 earthquakes and behavioral changes after Ms=7.1 Darfield (2010) and Ms=6.3 Christchurch (2011) earthquakes for an instrumented eight story RC building. The dynamic characteristics of the instrumented buildings were identified using state-of-the-art N4SID system identification technique. Seismic response trends were developed for the three storey instrumented buildings in light of the identified frequencies and the peak response accelerations (PRA). Frequencies were observed to decrease with excitation level while no trends are discernible for the damping ratios. Soil-structure interaction (SSI) effects were also determined to ascertain their contribution in the seismic response. For the eight storey building, it was found through system identification that strong nonlinearities in the structural response occurred and manifested themselves in all identified natural frequencies of the building that exhibited a marked decrease during the strong motion duration compared to the pre-Darfield earthquakes. Evidence of foundation rocking was also found that led to a slight decrease in the identified modal frequencies. Permanent stiffness loss was also observed after the strong motion events. The second part constitutes developing and calibrating finite element model (FEM) of the instrumented three storey RC building with a shear core. A three dimensional FEM of the building is developed in stages to analyze the effect of structural, non-structural components (NSCs) and SSI on the building dynamics. Further to accurately replicate the response of the building following the response trends developed in the first part of the thesis, sensitivity based model updating technique was applied. The FEMs were calibrated by tuning the updating parameters which are stiffnesses of concrete, NSCs and soil. The updating parameters were found to generally follow decreasing trends with the excitation level. Finally, the updated FEM was used in time history analyses to assess the building seismic performance at the serviceability limit state shaking. Overall, this research will contribute towards better understanding and prediction of the behavior of structures subjected to ground motion.

Research papers, University of Canterbury Library

This study contains an evaluation of the seismic hazard associated with the Springbank Fault, a blind structure discovered in 1998 close to Christchurch. The assessment of the seismic hazard is approached as a deterministic process in which it is necessary to establish: 1) fault characteristics; 2) the maximum earthquake that the fault is capable of producing and 3) ground motions estimations. Due to the blind nature of the fault, conventional techniques used to establish the basic fault characteristics for seismic hazard assessments could not be applied. Alternative methods are used including global positioning system (GPS) surveys, morphometric analyses along rivers, shallow seismic reflection surveys and computer modelling. These were supplemented by using multiple empirical equations relating fault attributes to earthquake magnitude, and attenuation relationships to estimate ground motions in the near-fault zone. The analyses indicated that the Springbank Fault is a reverse structure located approximately 30 km to the northwest of Christchurch, along a strike length of approximately 16 km between the Eyre and Ashley River. The fault does not reach the surface, buy it is associated with a broad anticline whose maximum topographic expression offers close to the mid-length of the fault. Two other reverse faults, the Eyrewell and Sefton Faults, are inferred in the study area. These faults, together with the Springbank and Hororata Faults and interpreted as part of a sys of trust/reverse faults propagating from a decollement located at mid-crustal depths of approximately 14 km beneath the Canterbury Plains Within this fault system, the Springbank Fault is considered to behave in a seismically independent way, with a fault slip rate of ~0.2 mm/yr, and the capacity of producing a reverse-slip earthquake of moment magnitude ~6.4, with an earthquake recurrence of 3,000 years. An earthquake of the above characteristics represents a significant seismic hazard for various urban centres in the near-fault zone including Christchurch, Rangiora, Oxford, Amberley, Kaiapoi, Darfield, Rollestion and Cust. Estimated peak ground accelerations for these towns range between 0.14 g to 0.5 g.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility of light-weight buildings to movement under high-wind loading. The 1994 Northridge Earthquake (6.7 MW) in the United States, 1995 Kobe Earthquake (6.9 MW) in Japan and 2011 Christchurch Earthquake (6.7 Mw) all highlighted significant loss to light-frame wood buildings with over half of earthquake recovery costs allocated to their repair and reconstruction. This poster presents a value case to highlight the benefits of seismically isolated residential buildings compared to the standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used to determine vulnerability functions for the current light-frame wood building stock. By using a simplified single degree of freedom (SDOF) building model, methods for determining vulnerability functions for seismic isolated buildings are developed. Vulnerability functions are then applied directly in a loss assessment to determine the Expected Annual Loss. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building resulting in significant monetary savings, justifying the value case. A state-of-the-art timber modelling software, Timber3D, is then used to model a typical residential building with and without seismic isolation to assess the performance of a proposed seismic isolation system which addresses the technical and cost issues.

Research papers, The University of Auckland Library

The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.