Search

found 4 results

Research papers, Victoria University of Wellington

Museums around the world are often affected by major catastrophes, and yet planning for these disasters is an often neglected aspect of museum practice. New Zealand is not immune from these events, as can be seen in the recent series of serious earthquakes in Christchurch in 2010 and 2011. This dissertation considers how prepared the New Zealand museum sector is to handle unexpected events that negatively affect its buildings, staff, operations and treasured collections. The central research question was: What is the overall state of emergency planning in the New Zealand museum sector? There was a significant gap in the literature, especially in the local context, as there has been only one other comparable study conducted in Britain, and nothing locally. This dissertation makes a valuable contribution to the field of museum studies by drawing on theory from relevant areas such as crises management literature and by conducting original empirical research on a topic which has received little attention hitherto. The research employed a number of methods, including a review of background secondary sources, a survey and interviews. After contextualising the study with a number of local examples, Ian online survey was then developed an which enabled precise understanding of the nature of current museum practices and policies around emergency planning. Following this I conducted several interviews with museum professionals from a variety of institutional backgrounds which explored their thoughts and feelings behind the existing practices within the industry. The findings of the research were significant and somewhat alarming: almost 40% of the museum and galleries in New Zealand do not have any emergency plan at all, and only 11% have what they considered ‘complete’ plans. The research revealed a clear picture of the current width and depth of planning, as well as practices around updating the plans and training related to them. Within the industry there is awareness that planning for emergencies is important, but museum staff typically lack the knowledge and guidance needed to conduct effective emergency planning. As a result of the analysis, several practical suggestions are presented aimed at improving emergency planning practices in New Zealand museums. However this study has implications for museum studies and for current museum practice everywhere, as many of the recommendations for resolving the current obstacles and problems are applicable anywhere in the world, suggesting that New Zealand museums could become leaders in this important area.

Research papers, The University of Auckland Library

Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.

Research papers, University of Canterbury Library

Disasters can create the equivalent of 20 years of waste in only a few days. Disaster waste can have direct impacts on public health and safety, and on the environment. The management of such waste has a great direct cost to society in terms of labor, equipment, processing, transport and disposal. Disaster waste management also has indirect costs, in the sense that slow management can slow down a recovery, greatly affecting the ability of commerce and industry to re-start. In addition, a disaster can lead to the disruption of normal solid waste management systems, or result in inappropriate management that leads to expensive environmental remediation. Finally, there are social impacts implicit in disaster waste management decisions because of psychological impact we expect when waste is not cleared quickly or is cleared too quickly. The paper gives an overview of the challenge of disaster waste management, examining issues of waste quantity and composition; waste treatment; environmental, economic, and social impacts; health and safety matters; and planning. Christchurch, New Zealand, and the broader region of Canterbury were impacted during this research by a series of shallow earthquakes. This has led to the largest natural disaster emergency in New Zealand’s history, and the management of approximately 8 million tons of building and infrastructure debris has become a major issue. The paper provides an overview of the status of disaster waste management in Christchurch as a case study. A key conclusion is the vital role of planning in effective disaster waste management. In spite of the frequency of disasters, in most countries the ratio of time spent on planning for disaster waste management to the time spent on normal waste management is extremely low. Disaster waste management also requires improved education or training of those involved in response efforts. All solid waste professionals have a role to play to respond to the challenges of disaster waste management.

Research papers, University of Canterbury Library

Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.