This paper begins with a discussion of the history of negligent manslaughter in New Zealand and its development from the standard of ordinary negligence to the current test of a “major departure” from the expected standard of care, as set out under s 150A of the Crimes Act 1961. The paper then examines failings in s 150A’s current application, arguing that the “major departure” test has created injustices due to its strictly objective nature. Two examples of this are discussed in-depth, Bawa-Garba v R (UK) where a doctor was convicted of grossly negligent manslaughter for the death of her patient; and the decision not to prosecute the negligent engineers of the CTV building which collapsed in the Christchurch earthquake of 2011. The paper discusses three potential resolutions moving forward. It concludes that a more subjective interpretation of the wording of s 150A, which takes account of circumstances excusing or condemning a defendant’s conduct, would prevent future injustices and be a reasonably open interpretation on the wording of s 150A.
© 2018 Springer Nature B.V. This study compares seismic losses considering initial construction costs and direct-repair costs for New Zealand steel moment-resisting frame buildings with friction connections and those with extended bolted-end-plate connections. A total of 12 buildings have been designed and analysed considering both connection types, two building heights (4-storey and 12-storey), and three locations around New Zealand (Auckland, Christchurch, and Wellington). It was found that buildings with friction connections required design to a higher design ductility, yet are generally stiffer due to larger beams being required to satisfy higher connection overstrength requirements. This resulted in the frames with friction connections experiencing lower interstorey drifts on most floors but similar peak total floor accelerations, and subsequently incurring lower drift-related seismic repair losses. Frames with friction connections tended to have lower expected net-present-costs within 50 years of the building being in service for shorter buildings and/or if located in regions of high seismicity. None of the frames with friction connections in Auckland showed any benefits due to the low seismicity of the region.
Natural hazard reviews reveal increases in disaster impacts nowhere more pronounced than in coastal settlements. Despite efforts to enhance hazard resilience, the common trend remains to keep producing disaster prone places. This paper explicitly explores hazard versus multi-hazard concepts to illustrate how different conceptualizations can enhance or reduce settlement resilience. Understandings gained were combined with onthe-ground lessons from earthquake and flooding experiences to develop of a novel ‘first cut’ approach for analyzing key multi-hazard interconnections, and to evaluate resilience enhancing opportunities. Traditional disaster resilience efforts often consider different hazard types discretely. However, recent events in Christchurch, a New Zealand city that is part of the 100 Resilient Cities network, highlight the need to analyze the interrelated nature of different hazards, especially for enhancing lifelines system resilience. Our overview of the Christchurch case study demonstrates that seismic, hydrological, shallow-earth, and coastal hazards can be fundamentally interconnected, with catastrophic results where such interconnections go unrecognized. In response, we have begun to develop a simple approach for use by different stakeholders to support resilience planning, pre and post disaster, by: drawing attention to natural and built environment multi-hazard links in general; illustrating a ‘first cut’ tool for uncovering earthquake-flooding multi-hazard links in particular; and providing a basis for reviewing resilience strategy effectiveness in multi-hazard prone environments. This framework has particular application to tectonically active areas exposed to climate-change issues.
Livelihood holds the key to a rapid recovery following a large-scale devastating disaster, building its resilience is of paramount importance. While much attention has been given to how to help people who are displaced from their jobs to regain employment, little research on livelihood resilience has been undertaken for those relocated communities following a disaster event. By studying five re-located villages post-2004 Indian Ocean Tsunami in Banda Aceh and Aceh Besar, Indonesia, this research has identified the indicators of livelihood resilience and the critical factors driving it for post-disaster relocated communities. A mixed approach, combining questionnaire surveys, semistructured interviews, and field observations, was used for the collection of data. Housing entitlement, the physical and mental health of residents, access to external livelihood support and the provision of infrastructure and basic services were identified as amongst the most critical indicators that represent the level of livelihood resilience. Early recovery income support, physical and mental health, availability and timeliness of livelihood support, together with cultural sensitivity and governance structure, are amongst the most important factors. Given the nature of resettlement, access to infrastructure, location of relocated sites, the safety of the neighbourhood and the ability to transfer to other jobs/skills also play an important role in establishing sustained employment for relocated communities in Indonesia. Those indicators and factors were synthesised into a framework which was further tested in the recovery of Christchurch, and Kaikoura, New Zealand during their recovery from devastating earthquakes. It is suggested that the framework can be used by government agencies and aid organisations to assess the livelihood resilience of post-disaster relocated communities. This will help better them plan support policies and/or prioritise resilience investment strategies to ensure that the recovery needs of those relocated are best met.
On November 14 2016 a magnitude 7.8 earthquake struck the south island of New Zealand. The earthquake lasted for just two minutes with severe seismic shaking and damage in the Hurunui and Kaikōura districts. Although these are predominantly rural areas, with scattered small towns and mountainous topography, they also contain road and rail routes that are essential parts of the national transport infrastructure. This earthquake and the subsequent recovery are of particular significance as they represent a disaster following in close proximity to another similar disaster, with the Canterbury earthquakes occurring in a neighboring district five years earlier. The research used an inductive qualitative case study to explore the nature of the Kaikōura recovery. That recovery process involved a complex interplay between the three parties; (a) the existing local government in the district, (b) central government agencies funding the recovery of the local residents and the national transport infrastructure, and (c) recovery leaders arriving with recent expertise from the earlier Canterbury disaster. It was evident that three groups: locals, government, and experts represented a multi-party governance debate in which the control of the Kaikōura earthquake recovery was shared amongst them. Each party had their own expertise, adgenda and networks that they brought to the Kaikōura recovery, but this created tensions between external expertise and local, community leadership. Recent earthquake research suggests that New Zealand is currently in the midst of an earthquake cluster, with further seismic disasters likely to occur in relatively close succession. This is likely to be compounded by the increasing frequency of other natural disasters with the effects of climate change. The present study investigates a phenomenon that may become increasingly common, with the transfer of disaster expertise from one event to another, and the interface between those experts with local and national government in directing recoveries. The findings of this study have implications for practitioners and policy makers in NZ and other countries where disasters are experienced in close spatial and temporal proximity.