Search

found 23 results

Research papers, The University of Auckland Library

In the early morning of 4th September 2010 the region of Canterbury, New Zealand, was subjected to a magnitude 7.1 earthquake. The epicentre was located near the town of Darfield, 40 km west of the city of Christchurch. This was the country’s most damaging earthquake since the 1931 Hawke’s Bay earthquake (GeoNet, 2010). Since 4th September 2010 the region has been subjected to thousands of aftershocks, including several more damaging events such as a magnitude 6.3 aftershock on 22nd February 2011. Although of a smaller magnitude, the earthquake on 22nd February produced peak ground accelerations in the Christchurch region three times greater than the 4th September earthquake and in some cases shaking intensities greater than twice the design level (GeoNet, 2011; IPENZ, 2011). While in September 2010 most earthquake shaking damage was limited to unreinforced masonry (URM) buildings, in February all types of buildings sustained damage. Temporary shoring and strengthening techniques applied to buildings following the Darfield earthquake were tested in February 2011. In addition, two large aftershocks occurred on 13th June 2011 (magnitudes 5.7 and 6.2), further damaging many already weakened structures. The damage to unreinforced and retrofitted clay brick masonry buildings in the 4th September 2010 Darfield earthquake has already been reported by Ingham and Griffith (2011) and Dizhur et al. (2010b). A brief review of damage from the 22nd February 2011 earthquake is presented here

Research papers, University of Canterbury Library

On 22 February 2011, Canterbury and its largest city Christchurch experienced its second major earthquake within six months. The region is facing major economic and organisational challenges in the aftermath of these events. Approximately 25% of all buildings in the Christchurch CBD have been “red tagged” or deemed unsafe to enter. The New Zealand Treasury estimates that the combined cost of the February earthquake and the September earthquake is approximately NZ$15 billion[2]. This paper examines the national and regional economic climate prior to the event, discusses the immediate economic implications of this event, and the challenges and opportunities faced by organisations affected by this event. In order to facilitate recovery of the Christchurch area, organisations must adjust to a new norm; finding ways not only to continue functioning, but to grow in the months and years following these earthquakes. Some organisations relocated within days to areas that have been less affected by the earthquakes. Others are taking advantage of government subsidised aid packages to help retain their employees until they can make long-term decisions about the future of their organisation. This paper is framed as a “report from the field” in order to provide insight into the early recovery scenario as it applies to organisations affected by the February 2011 earthquake. It is intended both to inform and facilitate discussion about how organisations can and should pursue recovery in Canterbury, and how organisations can become more resilient in the face of the next crisis.

Research papers, The University of Auckland Library

This paper presents preliminary field observations on the performance of selected steel structures in Christchurch during the earthquake series of 2010 to 2011. This comprises 6 damaging earthquakes, on 4 September and 26 December 2010, February 22, June 6 and two on June 13, 2011. Most notable of these was the 4 September event, at Ms7.1 and MM7 (MM as observed in the Christchurch CBD) and most intense was the 22 February event at Ms6.3 and MM9-10 within the CBD. Focus is on performance of concentrically braced frames, eccentrically braced frames, moment resisting frames and industrial storage racks. With a few notable exceptions, steel structures performed well during this earthquake series, to the extent that inelastic deformations were less than what would have been expected given the severity of the recorded strong motions. Some hypotheses are formulated to explain this satisfactory performance. http://db.nzsee.org.nz/SpecialIssue/44%284%290297.pdf

Research papers, University of Canterbury Library

Six months after the 4 September 2010 Mw 7.1 Darfield (Canterbury) earthquake, a Mw 6.2 Christchurch (Lyttelton) aftershock struck Christchurch on the 22 February 2011. This earthquake was centred approximately 10km south-east of the Christchurch CBD at a shallow depth of 5km, resulting in intense seismic shaking within the Christchurch central business district (CBD). Unlike the 4 Sept earthquake when limited-to-moderate damage was observed in engineered reinforced concrete (RC) buildings [35], in the 22 February event a high number of RC Buildings in the Christchurch CBD (16.2 % out of 833) were severely damaged. There were 182 fatalities, 135 of which were the unfortunate consequences of the complete collapse of two mid-rise RC buildings. This paper describes immediate observations of damage to RC buildings in the 22 February 2011 Christchurch earthquake. Some preliminary lessons are highlighted and discussed in light of the observed performance of the RC building stock. Damage statistics and typical damage patterns are presented for various configurations and lateral resisting systems. Data was collated predominantly from first-hand post-earthquake reconnaissance observations by the authors, complemented with detailed assessment of the structural drawings of critical buildings and the observed behaviour. Overall, the 22 February 2011 Mw 6.2 Christchurch earthquake was a particularly severe test for both modern seismically-designed and existing non-ductile RC buildings. The sequence of earthquakes since the 4 Sept 2010, particularly the 22 Feb event has confirmed old lessons and brought to life new critical ones, highlighting some urgent action required to remedy structural deficiencies in both existing and “modern” buildings. Given the major social and economic impact of the earthquakes to a country with strong seismic engineering tradition, no doubt some aspects of the seismic design will be improved based on the lessons from Christchurch. The bar needs to and can be raised, starting with a strong endorsement of new damage-resisting, whilst cost-efficient, technologies as well as the strict enforcement, including financial incentives, of active policies for the seismic retrofit of existing buildings at a national scale.

Research papers, The University of Auckland Library

As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/

Research papers, University of Canterbury Library

This paper describes the performance of (or damage to) ceilings in buildings during the 22nd February 2011 Christchurch earthquake and the subsequent aftershocks. In buildings that suffered severe structural damage, ceilings and other non-structural components (rather expectedly) failed, but even in buildings with little damage to their structural systems, ceilings were found to be severely damaged. The extent of ceiling damage, where the ceilings were subject to severe shaking, depended on the type of the ceiling system, the size and weight of the ceilings and the interaction of ceilings with other elements. The varieties and extent of observed ceiling damage are discussed in this paper with the help of photographs taken after the earthquake.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

An overview of the 22 February 2011 Christchurch earthquake is presented in the context of characterization of extreme/rare events. Focus is given to the earthquake source, observed near-source strong ground motions, and effects of site response, while structural response and consequences are mentioned for completeness. For each of the above topics comparisons and discussions are made with predictive models for each of phenomena considered. In light of the observations and predictive model comparisons, the author’s opinion on improving the characterization of such extreme/rare events, and their appropriate consideration in seismic design is presented

Research papers, University of Canterbury Library

In the aftermath of the 22 February 2011 earthquake, the Natural Hazards Research Platform (NHRP) initiated a series of Short Term Recovery Projects (STRP) aimed at facilitating and supporting the recovery of Christchurch from the earthquake impacts. This report presents the outcomes of STRP 6: Impacts of Liquefaction on Pipe Networks, which focused on the impacts of liquefaction on the potable water and wastewater systems of Christchurch. The project was a collaborative effort of NHRP researchers with expertise in liquefaction, CCC personnel managing and designing the systems and a geotechnical practitioner with experience/expertise in Christchurch soils and seismic geotechnics.

Research papers, University of Canterbury Library

Blended learning plays an important role in many tertiary institutions but little has been written about the implementation of blended learning in times of adversity, natural disaster or crisis. This paper describes how, in the wake of the 22 February Canterbury earthquake, five teacher educators responded to crisis-driven changing demands and changing directions. Our narratives describe how blended learning provided students in initial teacher education programmes with some certainty and continuity during a time of civil emergency. The professional learning generated from our experiences provides valuable insights for designing and preparing for blended learning in times of crisis, as well as developing resilient blended learning programmes for the future.

Research papers, University of Canterbury Library

This manuscript provides a critical examination of the ground motions recorded in the near-source region resulting from the 22 February 2011 Christchurch earthquake. Particular attention is given to reconciling the observed spatial distribution of ground motions in terms of physical phenomena related to source, path and site effects. The large number of near-source observed strong ground motions show clear evidence of: forward-directivity, basin generated surface waves, liquefaction and other significant nonlinear site response. The pseudo-acceleration response spectra (SA) amplitudes and significant duration of strong motions agree well with empirical prediction models, except at long vibration periods where the influence of basin-generated surface waves and nonlinear site response are significant and not adequately accounted for in empirical SA models. Pseudo-acceleration response spectra are also compared with those observed in the 4 September 2010 Darfield earthquake and routine design response spectra used in order to emphasise the amplitude of ground shaking and elucidate the importance of local geotechnical characteristics on surface ground motions. The characteristics of the observed vertical component accelerations are shown to be strongly dependent on source-to-site distance and are comparable with those from the 4 September 2010 Darfield earthquake, implying the large amplitudes observed are simply a result of many observations at close distances rather than a peculiar source effect.

Research papers, University of Canterbury Library

This paper describes pounding damage sustained by buildings and bridges in the February 2011 Christchurch earthquake. Approximately 6% of buildings in Christchurch CBD were observed to have suffered some form of serious pounding damage. Almost all of this pounding damage occurred in masonry buildings, further highlighting their vulnerability to this phenomenon. Modern buildings were found to be vulnerable to pounding damage where overly stiff and strong ‘flashing’ components were installed in existing building separations. Soil variability is identified as a key aspect that amplifies the relative movement of buildings, and hence increases the likelihood of pounding damage. Pounding damage in bridges was found to be relatively minor and infrequent in the Christchurch earthquake.

Research papers, The University of Auckland Library

The region in and around Christchurch, encompassing Christchurch city and the Selwyn and Waimakariri districts, contains more than 800 road, rail, and pedestrian bridges. Most of these bridges are reinforced concrete, symmetric, and have small to moderate spans (15–25 m). The 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake induced high levels of localized ground shaking (Bradley and Cubrinovski 2011, page 853 of this issue; Guidotti et al. 2011, page 767 of this issue; Smyrou et al. 2011, page 882 of this issue), with damage to bridges mainly confined to the central and eastern parts of Christchurch. Liquefaction was evident over much of this part of the city, with lateral spreading affecting bridges spanning both the Avon and Heathcote rivers.

Research papers, University of Canterbury Library

A magnitude 6.3 earthquake struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011. The earthquake caused 182 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to the lifelines. The event created the largest lifeline disruption in a New Zealand city in 80 years, with much of the damage resulting from extensive and severe liquefaction in the Christchurch urban area. The Christchurch earthquake occurred when the Canterbury region and its lifelines systems were at the early stage of recovering from the 4 September 2010 Darfield (Canterbury) magnitude 7.1 earthquake. This paper describes the impact of the Christchurch earthquake on lifelines by briefly summarising the physical damage to the networks, the system performance and the operational response during the emergency management and the recovery phase. Special focus is given to the performance and management of the gas, electric and road networks and to the liquefaction ejecta clean-up operations that contributed to the rapid reinstatement of the functionality of many of the lifelines. The water and wastewater system performances are also summarized. Elements of resilience that contributed to good network performance or to efficient emergency and recovery management are highlighted in the paper.

Research papers, University of Canterbury Library

The extent of liquefaction in the eastern suburbs of Christchurch (Aranui, Bexley, Avonside, Avonhead and Dallington) from the February 22 2011 Earthquake resulted in extensive damage to in-ground waste water pipe systems. This caused a huge demand for portable toilets (or port-a-loos) and companies were importing them from outside Canterbury and in some instances from Australia. However, because they were deemed “assets of importance” under legislation, their allocation had to be coordinated by Civil Defence and Emergency Management (CDEM). Consequently, companies supplying them had to ignore requests from residents, businesses and rest homes; and commitments to large events outside of the city such as the Hamilton 400 V8 Supercars and the Pasifika Festival in Auckland were impacted. Frustrations started to show as neighbourhoods questioned the equity of the port-a-loos distribution. The Prime Minister was reported as reassuring citizens in the eastern suburbs in the first week of March that1 “a report about the distribution of port-a-loos and chemical toilets shows allocation has been fair. Key said he has asked Civil Defence about the distribution process and where the toilets been sent. He said there aren’t enough for the scale of the event but that is quickly being rectified and the need for toilets is being reassessed all the time.” Nonetheless, there still remained a deep sense of frustration and exclusion over the equity of the port-a-loos distribution. This study took the simple approach of mapping where those port-a-loos were on 11-12 March for several areas in the eastern suburbs and this suggested that their distribution was not equitable and was not well done. It reviews the predictive tools available for estimating damage to waste water pipes and asks the question could this situation have been better planned so that pot-a-loo locations could have been better prioritised? And finally it reviews the integral roles of communication and monitoring as part of disaster management strategy. The impression from this study is that other New Zealand urban centres could or would also be at risk and that work is need to developed more rational management approaches for disaster planning.

Research papers, University of Canterbury Library

Following the September 2010 earthquake and the closure of a number of campus libraries, library staff at the University of Canterbury was forced to rethink how they connected with their users. The established virtual reference service now meant library staff could be contacted regardless of their physical location. After the February earthquake, with University library closures ranging from 3 weeks to indefinite, this service came into its own as a vital communication tool. It facilitated contact between the library and both students and academics, as well as proving invaluable as a means for library staff to locate and communicate with each other. Transcripts from our post-earthquake interactions with users were analyzed using NVivo and will be presented in poster format showing the increase in usage of the service following the earthquakes, who used the service most, and the numbers and types of questions received. Our virtual reference tool was well used in the difficult post-earthquake periods and we can see this usage continuing as university life returns to normal.

Research papers, University of Canterbury Library

As the result of the September 4th 2010 Canterbury earthquake and associated aftershocks on February 22nd 2011 and June 13th 2011, final examinations in the two 100 level economics papers at Canterbury University were cancelled at short notice in semester one 2011. The final examination weightings were spread over the remaining assessments to obtain a final grade for students. This paper attempts to establish how different online assessment conditions affect final grade distributions when online assessments are substituted for an invigilated final examination. Pearson correlation coefficients and Spearman rank order correlation coefficients are used to show that there is a greater correlation between online quizzes and invigilated assessments when those quizzes are only available for a restricted period of time, compared to the whole semester. We find that online quizzes are more closely correlated with invigilated assessments when the first attempt at a quiz is recorded, as opposed to the highest of two attempts. We also find that using the first attempt leads to less grade disruption when compared to a “normal” semester that includes a final examination. Finally, the actual impact on student grades when online quizzes are substituted for a final examination is discussed.

Research papers, Lincoln University

On September the 4th 2010 and February 22nd 2011 the Canterbury region of New Zealand was shaken by two massive earthquakes. This paper is set broadly within the civil defence and emergency management literature and informed by recent work on community participation and social capital in the building of resilient cities. Work in this area indicates a need to recognise both the formal institutional response to the earthquakes as well as the substantive role communities play in their own recovery. The range of factors that facilitate or hinder community involvement also needs to be better understood. This paper interrogates the assumption that recovery agencies and officials are both willing and able to engage communities who are themselves willing and able to be engaged in accordance with recovery best practice. Case studies of three community groups – CanCERN, Greening the Rubble and Gap Filler – illustrate some of the difficulties associated with becoming a community during the disaster recovery phase. Based on my own observations and experiences, combined with data from approximately 50 in-depth interviews with Christchurch residents and representatives from community groups, the Christchurch City Council, the Earthquake Commission and so on, this paper outlines some practical strategies emerging communities may use in the early disaster recovery phase that then strengthens their ability to ‘participate’ in the recovery process.

Research papers, University of Canterbury Library

At 4.35am on Saturday 4 September 2010, a magnitude 7.1 earthquake struck near the township of Darfield in Canterbury leading to widespread damage in Christchurch and the wider central Canterbury region. Though it was reported no lives were lost, that was not entirely correct. Over 3,000 animals perished as a result of the earthquake and 99% of these deaths would have been avoidable if appropriate mitigation measures had been in place. Deaths were predominantly due to zoological vulnerability of birds in captive production farms. Other problems included lack of provision of animal welfare at evacuation centres, issues associated with multiple lost and found pet services, evacuation failure due to pet separation and stress impact on dairy herds and associated milk production. The Canterbury Earthquake has highlighted concerns over a lack of animal emergency welfare planning and capacity in New Zealand, an issue that is being progressed by the National Animal Welfare Emergency Management Group. As animal emergency management becomes better understood by emergency management and veterinary professionals, it is more likely that both sectors will have greater demands placed upon them by national guidelines and community expectations to ensure provisions are made to afford protection of animals in times of disaster. A subsequent and more devastating earthquake struck the region on Monday 22 February 2011; this article however is primarily focused on the events pertaining to the September 4 event.

Research papers, Lincoln University

There is a critical strand of literature suggesting that there are no ‘natural’ disasters (Abramovitz, 2001; Anderson and Woodrow, 1998; Clarke, 2008; Hinchliffe, 2004). There are only those that leave us – the people - more or less shaken and disturbed. There may be some substance to this; for example, how many readers recall the 7.8 magnitude earthquake centred in Fiordland in July 2009? Because it was so far away from a major centre and very few people suffered any consequences, the number is likely to be far fewer than those who remember (all too vividly) the relatively smaller 7.1 magnitude Canterbury quake of September 4th 2010 and the more recent 6.3 magnitude February 22nd 2011 event. One implication of this construction of disasters is that seismic events, like those in Canterbury, are as much socio-political as they are geological. Yet, as this paper shows, the temptation in recovery is to tick boxes and rebuild rather than recover, and to focus on hard infrastructure rather than civic expertise and community involvement. In this paper I draw upon different models of community engagement and use Putnam’s (1995) notion of ‘social capital’ to frame the argument that ‘building bridges’ after a disaster is a complex blend of engineering, communication and collaboration. I then present the results of a qualitative research project undertaken after the September 4th earthquake. This research helps to illustrate the important connections between technical rebuilding, social capital, recovery processes and overall urban resilience.

Research papers, University of Canterbury Library

This thesis investigates the relationship between the apocalyptic narrative and the postmodern novel. It explores and builds on Patricia Waugh‟s hypothesis in Practising Postmodernism: Reading Modernism (1992) which suggests that that the postmodern is characterised by an apocalyptic sense of crisis, and argues that there is in fact a strong relationship between the apocalyptic and the postmodern. It does so through an exploration of apocalyptic narratives and themes in five postmodern novels. It also draws on additional supporting material which includes literary and cultural theory and criticism, as well as historical theory. In using the novel as a medium through which to explore apocalyptic narratives, this thesis both assumes and affirms the novel‟s importance as a cultural artefact which reflects the concerns of the age in which it is written. I suggest that each of the novels discussed in this thesis demonstrates the close relationship between the apocalyptic and the postmodern through society‟s concern over the direction of history, the validity of meta-narratives, and other cultural phenomenon, such as war, the development of nuclear weaponry, and terrorism. Although the scope of this thesis is largely confined to the historical-cultural epoch known as postmodernity, it also draws on literature and cultural criticism from earlier periods so as to provide a more comprehensive framework for investigating apocalyptic ideas and their importance inside the postmodern novel. A number of modernist writers are therefore referred to or quoted throughout this thesis, as are other important thinkers from preceding periods whose ideas are especially pertinent. The present thesis was researched and written between March 2010 and August 2011 and is dedicated to all of those people who lost their lives in the apocalyptic events of the February 22nd Christchurch earthquake.

Research papers, University of Canterbury Library

On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).