Base isolation is arguably the most reliable method for providing enhanced protection of buildings against earthquake-induced actions, by virtue of a physical separation between the structure and the ground through elements/devices with controlled force capacity, significant lateral deformation capacity and (often) enhanced energy dissipation. Such a design solution has shown its effectiveness in protecting both structural and non-structural components, hence preserving their functionality even in the aftermath of a major seismic event. Despite lead rubber bearings being invented in New Zealand almost forty years ago, the Christchurch Women's hospital was the only isolated building in Christchurch when the Canterbury earthquake sequence struck in 2010/11. Furthermore, a reference code for designing base-isolated buildings in New Zealand is still missing. The absence of a design standard or at least of a consensus on design guidelines is a potential source for a lack of uniformity in terms of performance criteria and compliance design approaches. It may also limit more widespread use of the technology in New Zealand. The present paper provides an overview of the major international codes (American, Japanese and European) for the design of base-isolated buildings. The design performance requirements, the analysis procedures, the design review process and approval/quality control of devices outlined in each code are discussed and their respective pros and cons are compared through a design application on a benchmark building in New Zealand. The results gathered from this comparison are intended to set the basis for the development of guidelines specific for the New Zealand environment.
Christchurch earthquake events have raised questions on the adequacy of performance-based provisions in the current national building code. At present, in the building code the performance objectives are expressed in terms of safety and health criteria that could affect building occupants. In general, under the high intensity Christchurch events, buildings performed well in terms of life-safety (with a few exceptions) and it proved that the design practices adopted for those buildings could meet the performance objectives set by the building code. However, the damage incurred in those buildings resulted in unacceptably high economic loss. It is timely and necessary to revisit the objectives towards building performance in the building code and to include provisions for reducing economic implications in addition to the current requirements. Based on the observed performance of some buildings, a few specific issues in the current design practices that could have contributed to extensive damage have been identified and recommended for further research leading towards improved performance of structures. In particular, efforts towards innovative design/construction solutions with low-damage concepts are encouraged. New Zealand has been one of the leading countries in developing many innovative technologies. However, such technically advanced research findings usually face challenges towards implementation. Some of the reasons include: (i) lack of policy requirements; (iii) absence of demonstrated performance of new innovations to convince stakeholders; and (iv) non-existence of design guidelines. Such barriers significantly affect implementation of low damage construction and possible strategies to overcome those issues are discussed in this paper.
The performance of buildings in recent New Zealand earthquakes (Canterbury, Seddon and Kaikōura), delivered stark lessons on seismic resilience. Most of our buildings, with a few notable exceptions, performed as our Codes intended them to, that is, to safeguard people from injury. Many buildings only suffered minor structural damage but were unable to be reused and occupied for significant periods of time due to the damage and failure of non-structural elements. This resulted in substantial economic losses and major disruptions to our businesses and communities. Research has attributed the damage to poor overall design coordination, inadequate or lack of seismic restraints for non structural elements and insufficient clearances between building components to cater for the interaction of non structural elements under seismic actions. Investigations have found a clear connection between the poor performance of non-structural elements and the issues causing pain in the industry (procurement methods, risk aversion, the lack of clear understanding of design and inspection responsibility and the need for better alignment of the design codes to enable a consistent integrated design approach). The challenge to improve the seismic performance of non structural elements in New Zealand is a complex one that cuts across a diverse construction industry. Adopting the key steps as recommended in this paper is expected to have significant co-benefits to the New Zealand construction industry, with improvements in productivity alongside reductions in costs and waste, as the rework which plagues the industry decreases.
During the 2010/2011 Canterbury earthquakes, Reinforced Concrete Frame with Masonry Infill (RCFMI) buildings were subjected to significant lateral loads. A survey conducted by Christchurch City Council (CCC) and the Canterbury Earthquake Recovery Authority (CERA) documented 10,777 damaged buildings, which included building characteristics (building address, the number of storeys, the year of construction, and building use) and post-earthquake damage observations (building safety information, observed damage, level of damage, and current state of the buildings). This data was merged into the Canterbury Earthquake Building Assessment (CEBA) database and was utilised to generate empirical fragility curves using the lognormal distribution method. The proposed fragility curves were expected to provide a reliable estimation of the mean vulnerability for commercial RCFMI buildings in the region. http://www.13thcms.com/wp-content/uploads/2017/05/Symposium-Info-and-Presentation-Schedule.pdf VoR - Version of Record
In this article we utilize grounded theory to explore women’s experiences in the unique construction industry context that followed the 2010 Canterbury (New Zealand) earthquakes. Data were obtained from 36 semi-structured interviews conducted with women working in a variety of occupations in the construction industry. We identify three inter-related categories: capitalizing on opportunity, demonstrating capability and surface tolerance, which together represent a response process that we label ‘deferential tailoring’. The deferential tailoring process explains how women intentionally shape their response to industry conditions through self-regulating behaviors that enables them to successfully seize opportunities and manage gender-related challenges in the working environment. Our findings challenge existing research which suggests that women adopt submissive coping strategies to conform to androcentric norms in the construction industry. Instead, we argue that the process of deferential tailoring can empower women to build positive workplace relationships, enhance career development, and help shift perceptions of the value of their work in the industry.
In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.
<b>Ōtautahi-Christchurch faces the future in an enviable position. Compared to other New Zealand cities Christchurch has lower housing costs, less congestion, and a brand-new central city emerging from the rubble of the 2011 earthquakes. ‘Room to Breathe: designing a framework for medium density housing (MDH) in Ōtautahi-Christchurch’ seeks to answer the timely question how can medium density housing assist Ōtautahi-Christchurch to respond to growth in a way that supports a well-functioning urban environment? Using research by design, the argument is made that MDH can be used to support a safe, accessible, and connected urban environment that fosters community, while retaining a level of privacy. This is achieved through designing a neighbourhood concept addressing 3 morphological scales- macro- the city; meso- the neighbourhood; and micro- the home and street. The scales are used to inform a design framework for MDH specific to Ōtautahi-Christchurch, presenting a typological concept that takes full advantage of the benefits higher density living has to offer.</b>
Room to Breathe proposes repurposing underutilised areas surrounding existing mass transit infrastructure to provide a concentrated populous who do not solely rely on private vehicles for transport. By considering all morphological scales Room to Breathe provides one suggestion on how MDH could become accepted as part of a well-functioning urban environment.
The capability of self-compacting concrete (SCC) in flowing through and filling in even the most congested areas makes it ideal for being used in congested reinforced concrete (RC) structural members such as beam-column joints (BCJ). However, members of tall multi-storey structures impose high capacity requirements where implementing normal-strength self-compacting concrete is not preferable. In the present study, a commercially reproducible high-strength self-compacting concrete (HSSCC), a conventionally vibrated high-strength concrete (CVHSC) and a normal strength conventionally vibrated concrete (CVC) were designed using locally available materials in Christchurch, New Zealand. Following the guidelines of the New Zealand concrete standards NZS3101, seven beam-column joints (BCJ) were designed. Factors such as the concrete type, grade of reinforcement, amount of joint shear stirrups, axial load, and direction of casting were considered variables. All BCJs were tested under a displacement-controlled quasi-static reversed cyclic regime. The cracking pattern at different load levels and the mode of failure were also recorded. In addition, the load, displacement, drift, ductility, joint shear deformations, and elongation of the plastic hinge zone were also measured during the experiment. It was found that not only none of the seismically important features were compromised by using HSSCC, but also the quality of material and ease of construction boosted the performance of the BCJs.
© 2018 Springer Nature B.V. This study compares seismic losses considering initial construction costs and direct-repair costs for New Zealand steel moment-resisting frame buildings with friction connections and those with extended bolted-end-plate connections. A total of 12 buildings have been designed and analysed considering both connection types, two building heights (4-storey and 12-storey), and three locations around New Zealand (Auckland, Christchurch, and Wellington). It was found that buildings with friction connections required design to a higher design ductility, yet are generally stiffer due to larger beams being required to satisfy higher connection overstrength requirements. This resulted in the frames with friction connections experiencing lower interstorey drifts on most floors but similar peak total floor accelerations, and subsequently incurring lower drift-related seismic repair losses. Frames with friction connections tended to have lower expected net-present-costs within 50 years of the building being in service for shorter buildings and/or if located in regions of high seismicity. None of the frames with friction connections in Auckland showed any benefits due to the low seismicity of the region.
Damage to ceiling systems resulted in a substantial financial loss to building owners in the Canterbury earthquakes. In some buildings, collapse of ceilings could easily have resulted in severe injury to occupants. This paper summarizes the types of ceiling damage observed in the Canterbury earthquakes, and draws useful lessons from the observed performance of different types of ceiling systems. Existing ceiling manufacturing and installing practices/regulations in New Zealand are critically scrutinized to identify deficiencies, and measures are suggested to improve the practice so that the damage to ceilings and the resulting loss are minimized in future earthquakes.
<b>Construction and Demolition (C&D) waste contributes to over 50% of New Zealand’s overall waste. Materials such as timber, plasterboard, and concrete make up 81% of the C&D waste that goes into landfills each year. Alongside this, more than 235 heritage-listed buildings have been demolished in Christchurch since the 2011 earthquakes. This research portfolio aims to find a solution to decrease C&D waste produced by demolishing heritage buildings.</b>
With the recent announcement of The Cathedral of the Blessed Sacrament’s demolition, this will be another building added to the list of lost heritage in Christchurch. This research portfolio aims to bridge the relationship between heritage and waste through the recycling and reuse of the demolished materials, exploring the idea that history and heritage are preserved through building material reuse.
This research portfolio mainly focuses on reducing construction and demolition waste in New Zealand, using the design of a new Catholic Cathedral as a vessel. This thesis will challenge how the construction and design industry deals with the demolition of heritage buildings and their contribution to New Zealand’s waste. It aims to explore the idea of building material reuse not only to reduce waste but also to retain the history and heritage of the demolished building within the materials.
Recent advances in timber design at the University of Canterbury have led to new structural systems that are appropriate for a wide range of building types, including multi-storey commercial office structures. These buildings are competitive with more traditional construction materials in terms of cost, sustainability and structural performance. This paper provides seismic design recommendations and analytical modelling approaches, appropriate for the seismic design of post-tensioned coupled timber wall systems. The models are based on existing seismic design theory for precast post-tensioned concrete, modified to more accurately account for elastic deformation of the timber wall systems and the influence of the floor system. Experimental test data from a two storey post-tensioned timber building, designed, constructed and tested at the University of Canterbury is used to validate the analytical models.
There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.
The Canterbury earthquakes have generated economic demand and supply volatility, highlighting geographical and structural interdependencies. Post-earthquake reconstruction and new developments have seen skills training, relocation, recruitment and importation of skills becoming crucial for construction companies to meet demand and compete effectively. This report presents 15 case studies from a range of organisations involved in the Canterbury rebuild, exploring the business dynamics and outcomes of their resourcing initiatives. A key finding of this research is that, for many construction organisations, resourcing initiatives have become part of their organisational longer-term development strategies, rather than simply a response to ‘supply and demand’ pressures. Organisations are not relying on any single resourcing solution to drive their growth but use a combination of initiatives to create lasting business benefits, such as cost savings, improved brand and reputation, a stable and productive workforce, enhanced efficiency and staff morale, as well as improved skill levels.
Following a major earthquake event, essential public amenities such as medical facilities and transport networks need to remain functional - not only to fulfil their ongoing role in serving the community but also to cope with the added and immediate demand of a population affected by a natural disaster. Furthermore, the economic implications of wide spread damage to housing and commercial facilities should not be discounted. A shift in design approach is required that is consistent with current trends towards performance based building design. The present aim is to achieve seismic energy dissipation during the earthquake event, without the aftermath of damage to structural elements, whilst maintaining design economies. Structures permitted to rock on their foundations and provide recoverable rotations at the beam-column interfaces offer significant advantages over those using conventional ductile detailing. A jointed construction philosophy can be applied whereby structural elements are connected with unbonded prestressing tendons. Supplemental damping is provided by replaceable flexural steel components designed to deform inelastically. For this research a multi-storey test building of one quarter scale has been constructed and tested on an earthquake simulator at the University of Canterbury. A computer model has been developed and a set ofpreliminary design procedures proposed.
Observations made in past earthquakes, in New Zealand and around the world, have highlighted the vulnerability of non-structural elements such as facades, ceilings, partitions and services. Damage to these elements can be life-threatening or jeopardise egress routes but typically, the main concern is the cost and time associated with repair works. The Insurance Council of New Zealand highlighted the substantial economic losses in recent earthquakes due to poor performance of non-structural elements. Previous inspections and research have attributed the damage to non-structural elements principally to poor coordination, inadequate or lack of seismic restraints and insufficient clearances to cater for seismic actions. Secondary issues of design responsibility, procurement and the need for better alignment of the various Standards have been identified. In addition to the compliance issues, researchers have also demonstrated that current code provisions for non-structural elements, both in New Zealand and abroad, may be inadequate. This paper first reviews the damage observed against the requirements of relevant Standards and the New Zealand Building Code, and it appears that, had the installations been compliant, the cost of repair and business interruption would have been substantially less. The second part of the paper highlights some of the apparent shortcomings with the current design process for non-structural elements, points towards possible alternative strategies and identifies areas where more research is deemed necessary. The challenge of improving the seismic performance of non-structural elements is a complex one across a diverse construction industry. Indications are that the New Zealand construction industry needs to completely rethink the delivery approach to ensure an integrated design, construction and certification process. The industry, QuakeCentre, QuakeCoRE and the University of Canterbury are presently working together to progress solutions. Indications are that if new processes can be initiated, better performance during earthquakes will be achieved while delivering enhanced building and business resilience.
The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.
Several concrete cladding panels were damaged during the 2011 Christchurch Earthquakes in New Zealand. Damage included partial collapse of panels, rupture of joint sealants, cracking and corner crushing. Installation errors, faulty connections and inadequate detailing were also contributing factors to the damage. In New Zealand, two main issues are considered in order to accommodate story drifts in the design of precast cladding panels: 1) drift compatibility of tieback or push-pull connections and 2) drift compatibility of corner joints. Tieback connections restrain the panels in the out-of-plane direction while allowing in-plane translation with respect to the building frame. Tieback connections are either in the form of slots or oversized holes or ductile rods usually located at the top of the panels. Bearing connections are also provided at the bottom of panels to transfer gravity loads. At the corners of a building, a vertical joint gap, usually filled with sealants, is provided between the two panels on the two orthogonal sides to accommodate the relative movement. In cases where the joint gap is not sufficient to accommodate the relative movements, panels can collide, generating large forces and the likely failure of the connections. On the other hand, large gaps are aesthetically unpleasing. The current design standards appear to recognize these issues but then leave most of the design and detailing to the discretion of the designers. In the installation phase, the alignment of panels is one of the main challenges faced by installers (and/or contractors). Many prefer temporary props to guide, adjust and hold the panels in place whilst the bearing connections are welded. Moreover, heat generated from extensive welding can twist the steel components inducing undesirable local stresses in the panels. Therefore, the installation phase itself is time-consuming, costly and prone to errors. This paper investigates the performance of a novel panel system that is designed to accommodate lateral inter-story drift through a ‘rocking’ motion. In order to gauge the feasibility of the system, six 2m high precast concrete panels within a single-story steel frame structure have been tested under increasing levels of lateral cyclic drift at the University of Canterbury, New Zealand. Three different panel configurations are tested: 1) a panel with return cover and a flat panel at a corner under unidirectional loading, 2) Two adjacent flat panels under unidirectional loading, and 3) Two flat panels at another oblique corner under bidirectional loading. A vertical seismic joint of 25 mm, filled with one-stage joint sealant, is provided between two of the panels. The test results show the ability of the panels with ‘rocking’ connection details to accommodate larger lateral drifts whilst allowing for smaller vertical joints between panels at corners, quick alignment and easy placement of panels without involving extensive welding on site.
The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.
This paper presents preliminary results of an experimental campaign on three beam-column joint subassemblies extracted from a 22-storey reinforced concrete frame building constructed in late 1980s at the Christchurch’s Central Business District (CBD) area, damaged and demolished after the 2010-2011 Canterbury earthquakes sequence (CES). The building was designed following capacity design principles. Column sway (i.e., soft storey) mechanisms were avoided, and the beams were provided with plastic hinge relocation details at both beam-ends, aiming at developing plastic hinges away from the column faces. The specimens were tested under quasi-static cyclic displacement controlled lateral loading. One of the specimens, showing no visible residual cracks was cyclically tested in its as-is condition. The other two specimens which showed residual cracks varying between hairline and 1.0mm in width, were subjected to cyclic loading to simulate cracking patterns consistent with what can be considered moderate damage. The cracked specimens were then repaired with an epoxy injection technique and subsequently retested until reaching failure. The epoxy injection techniques demonstrated to be quite efficient in partly, although not fully, restoring the energy dissipation capacities of the damaged specimens at all beam rotation levels. The stiffness was partly restored within the elastic range and almost fully restored after the onset of nonlinear behaviour.
The purpose of this paper is to empirically investigate the effects of a major disaster on the management of human resources in the construction sector. It sets out to identify the construction skills challenges and the factors that affected skills availability following the 2010/2011 earthquakes in Christchurch. It is hoped that this study will provide insights for on-going reconstruction and future disaster response with respect to the problem of skills shortages. Design/methodology/approach A triangulation method was adopted. The quantitative method, namely, a questionnaire survey, was employed to provide a baseline description. Field observations and interviews were used as a follow-up to ascertain issues and potential shortages over time. Three focus groups in the form of research workshops were convened to gain further insight into the feedback and to investigate the validity and applicability of the research findings. Findings The earthquakes in Christchurch had compounded the pre-existing skills shortages in the country due to heightened demand from reconstruction. Skills shortages primarily existed in seismic assessment and design for land and structures, certain trades, project management and site supervision. The limited technical capability available nationally, shortage of temporary accommodation to house additional workers, time needed for trainees to become skilled workers, lack of information about reconstruction workloads and lack of operational capacity within construction organisations, were critical constraints to the resourcing of disaster recovery projects. Research limitations/implications The research findings contribute to the debate on skills issues in construction. The study provides evidence that contributes to an improved understanding of the industry’s skills vulnerability and emerging issues that would likely exist after a major disaster in a resource-limited country such as New Zealand. Practical implications From this research, decision makers and construction organisations can gain a clear direction for improving the construction capacity and capability for on-going reconstruction. Factors that affected the post-earthquake skills availability can be considered by decision makers and construction organisations in their workforce planning for future disaster events. The recommendations will assist them in addressing skills shortages for on-going reconstruction. Originality/value Although the study is country-specific, the findings show the nature and scale of skills challenges the construction industry is likely to face following a major disaster, and the potential issues that may compound skills shortages. It provides lessons for other disaster-prone countries where the resource pool is small and a large number of additional workers are needed to undertake reconstruction.
Timber has experienced renewed interests as a sustainable building material in recent times. Although traditionally it has been the prime choice for residential construction in New Zealand and some other parts of the world, its use can be increased significantly in the future through a wider range of applications, particularly when adopting engineered wood material, Research has been started on the development of innovative solutions for multi-storey non-residential timber buildings in recent years and this study is part of that initiative. Application of timber in commercial and office spaces posed some challenges with requirements of large column-free spaces. The current construction practice with timber is not properly suited for structures with the aforementioned required characteristics and new type of structures has to be developed for this type of applications. Any new structural system has to have adequate capacity for carry the gravity and lateral loads due to occupancy and the environmental effects. Along with wind loading, one of the major sources of lateral loads is earthquakes. New Zealand, being located in a seismically active region, has significant risk of earthquake hazard specially in the central region of the country and any structure has be designed for the seismic loading appropriate for the locality. There have been some significant developments in precast concrete in terms of solutions for earthquake resistant structures in the last decade. The “Hybrid” concept combining post-tensioning and energy dissipating elements with structural members has been introduced in the late 1990s by the precast concrete industry to achieve moment-resistant connections based on dry jointed ductile connections. Recent research at the University of Canterbury has shown that the concept can be adopted for timber for similar applications. Hybrid timber frames using post-tensioned beams and dissipaters have the potential to allow longer spans and smaller cross sections than other forms of solid timber frames. Buildings with post-tensioned frames and walls can have larger column-free spaces which is a particular advantage for non-residential applications. While other researchers are focusing on whole structural systems, this research concentrated on the analysis and design of individual members and connections between members or between member and foundation. This thesis extends existing knowledge on the seismic behaviour and response of post-tensioned single walls, columns under uni-direction loads and small scale beam-column joint connections into the response and design of post-tensioned coupled walls, columns under bi-directional loading and full-scale beam-column joints, as well as to generate further insight into practical applications of the design concept for subassemblies. Extensive experimental investigation of walls, column and beam-column joints provided valuable confirmation of the satisfactory performance of these systems. In general, they all exhibited almost complete re-centering capacity and significant energy dissipation, without resulting into structural damage. The different configurations tested also demonstrated the flexibility in design and possibilities for applications in practical structures. Based on the experimental results, numerical models were developed and refined from previous literature in precast concrete jointed ductile connections to predict the behaviour of post-tensioned timber subassemblies. The calibrated models also suggest the values of relevant parameters for applications in further analysis and design. Section analyses involving those parameters are performed to develop procedures to calculate moment capacities of the subassemblies. The typical features and geometric configurations the different types of subassemblies are similar with the only major difference in the connection interfaces. With adoption of appropriate values representing the corresponding connection interface and incorporation of the details of geometry and configurations, moment capacities of all the subassemblies can be calculated with the same scheme. That is found to be true for both post-tensioned-only and hybrid specimens and also applied for both uni-directional and bi-directional loading. The common section analysis and moment capacity calculation procedure is applied in the general design approach for subassemblies.
As cities evolve, change and grow, the need and desire for adaptable architecture becomes evident across the nation. Architecture needs to undertake techniques that are flexible in order to adapt and align with the development of future generations in New Zealand. The Education industry is a primary example of a sector which requires flexibility within both classroom architectural form and interior configuration. This is a resultant of the recently updated Ministry of Education requirements; which state that every new classroom built or renovated nationwide, must implement the MoE classroom design standards for Innovative Learning Environments. ILE teaching spaces are configured as an open plan interior, supporting flexibility in classroom arrangement and teaching techniques. ILE classrooms are capable of evolving and adapting as educational practices evolve and change, allowing schools to remain modern and future focused. As part of this movement to ILE, the Ministry of Education has also recently made an attempt to improve the quality of temporary classrooms. This has been done by looking into the initiation of a programme that utilizes relocatable classroom buildings. Relocatable classrooms have been selected for multiple reasons, primarily flexibility. Flexibility is key for a school environment as it allows the school to actively respond to fluctuating school rolls. It is anticipated that the programme will provide a faster delivery process with a standardised design that allows the classrooms to be relocated from one school to another with relative ease. Following the devastating February 2011 earthquake the Greater Christchurch Region, the Education sector is in the midst of the Canterbury Schools Rebuild Programme. As a repercussion of this natural disaster, the majority of Christchurch schools have redevelopment or rebuild projects in progress, with preliminary design phases already in action for a small group of select schools regarded as high priority. The primary funding for these projects are sourced from insurance money, implementing tight budget restrictions, affecting the architectural design, quality and speed of the construction and repair works. The available funding limits the affordable classroom options to basic teaching spaces that have been stripped back to simple architectural forms, dictating not only the re-design, but also how our future generations will learn. Thus causing the development of the new student-led learning ILE concept to become controlled by existing construction techniques and the Rebuild Programmes budget restrictions. This thesis focuses on the future proofing of New Zealand schools by providing an affordable and time efficient alternative option to the current static, traditional construction, an option that has the ability to cater to the unpredictable fluctuating school rolls across the nation. This has been done by developing a prefabricated system for standalone classroom blocks. These blocks have the ability to be relocated between different school sites, dynamically catering to the unpredictable school roll numbers experienced across New Zealand. This site flexibility is reflected with the interior flexibility in the classrooms, enhancing the internal teaching space composition and challenges the existing design standards set by the Ministry of Education for Innovative Learning Environments. This system is called “Flexi-Ed”. Flexibility has been a key driver for this thesis, as the prefabricated structure is have to be flexible in three ways; first in the sense of being easy to assemble and disassemble. Second by offering flexible interior learning environments and thirdly the joints of the structure are designed with the ability to be flexible in order to cope with seismic activity. These three principles will provide schools with long term flexibility, minimal on-site interruption and heighten the standard of ILE across the nation. I strive to provide schools with long term flexibility and minimal site interruption, whilst heightening the standard of Innovative Learning Environments across New Zealand.
This report is the output of a longitudinal study that was established between the University of Auckland and Resilient Organisations, in conjunction with the Building Research Association of New Zealand (BRANZ), to evaluate the ongoing resource availability and capacity for post-earthquake reconstruction in Christchurch.
A natural disaster will inevitably strike New Zealand in the coming years, damaging educational facilities. Delays in building quality replacement facilities will lead to short-term disruption of education, risking long-term inequalities for the affected students. The Christchurch earthquake demonstrated the issues arising from a lack of school planning and support. This research proposes a system that can effectively provide rapid, prefabricated, primary schools in post-disaster environments. The aim is to continue education for children in the short term, while using construction that is suitable until the total replacement of the given school is completed. The expandable prefabricated architecture meets the strength, time, and transport requirements to deliver a robust, rapid relief temporary construction. It is also adaptable to any area within New Zealand. This design solution supports personal well-being and mitigates the risk of educational gaps, PTSD linked with anxiety and depression, and many other mental health disorders that can impact students and teachers after a natural disaster.
It is fast becoming common practice for civil engineering infrastructure and building structures to be designed to achieve a set of performance objectives. To do so, consideration is now being given to systems capable of sustaining minimal damage after an earthquake while still being cost competitive. This has led to the development of high performance seismic resisting systems, followed by advances in design methodologies. The paper presents the experimental response of four pre-cast, post-tensioned rocking walls with high-performing dissipating solutions tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building however, can also be used for the design of new, high-performance structures. The use of externally mounted dampers allowed numerous dissipation schemes to be explored including mild-steel dampers (hysteretic dampers), viscous dampers, a combination of both or no dampers. The advantages of both velocity and displacement dependant dissipation was investigated for protection against strong ground motions with differing rupture characteristics i.e. far-field and near-field events. The experimental results are used to verify a proposed design procedure for post-tensioned rocking systems with supplementary hysteretic and viscous dissipation. The predicted response compared well with the measured shake-table response.
<b>New Zealand has a housing crisis. High land prices and high construction costs have all contributed to unaffordable housing. Additionally, the New Zealand dream of the "quarter acre section" lifestyle that has encouraged urban sprawl throughout our major cities with increasingly unsustainable services, transport and road costs. New and exciting housing options need to be explored for urban areas. </b>
Christchurch is a city in New Zealand where urban sprawl has always been prevalent. In the wake of the 2010/2011 earthquakes sprawl increased further, relocating large suburban areas yet further away from the city centre. This has caused a greater reliance on cars, and a slower revival to the city.
Historically there is an aversion to higher density living. Perceived desirability is a large factor. The medium to high density solutions produced thus far have little regard for the concept of "home", with the use of substandard materials, and monotonous and repetitive design, and essentially falling short of addressing the needs of New Zealand's increasing population.
"A Home with a View" looks to address the needs of New Zealanders and Christchurch, through the individual tower-house within an overarching tower-housing neighbourhood development. The design as research thesis develops a medium density tower-housing neighbourhood as a mini city-scape, through the exploration of the tower-house as an intimate space to live and observe from.
Tower-housing has the potential to create a delightful, lively neighbourhood environment that contributes to quirky, new, and exciting housing options for New Zealand. The tower-house creates desire through unconventional lifestyle and highlights engaging solutions to an individual vertical housing type.
Earthquake Engineering is facing an extraordinarily challenging era, the ultimate target being set at increasingly higher levels by the demanding expectations of our modern society. The renewed challenge is to be able to provide low-cost, thus more widely affordable, high-seismic-performance structures capable of sustaining a design level earthquake with limited or negligible damage, minimum disruption of business (downtime) or, in more general terms, controllable socio-economical losses. The Canterbury earthquakes sequence in 2010-2011 has represented a tough reality check, confirming the current mismatch between societal expectations over the reality of seismic performance of modern buildings. In general, albeit with some unfortunate exceptions, modern multi-storey buildings performed as expected from a technical point of view, in particular when considering the intensity of the shaking (higher than new code design) they were subjected to. As per capacity design principles, plastic hinges formed in discrete regions, allowing the buildings to sway and stand and people to evacuate. Nevertheless, in many cases, these buildings were deemed too expensive to be repaired and were consequently demolished. Targeting life-safety is arguably not enough for our modern society, at least when dealing with new building construction. A paradigm shift towards damage-control design philosophy and technologies is urgently required. This paper and the associated presentation will discuss motivations, issues and, more importantly, cost-effective engineering solutions to design buildings capable of sustaining low-level of damage and thus limited business interruption after a design level earthquake. Focus will be given to the extensive research and developments in jointed ductile connections based upon controlled rocking & dissipating mechanisms for either reinforced concrete and, more recently, laminated timber structures. An overview of recent on-site applications of such systems, featuring some of the latest technical solutions developed in the laboratory and including proposals for the rebuild of Christchurch, will be provided as successful examples of practical implementation of performance-based seismic design theory and technology.
The Canterbury earthquake series of 2010/2011 has turned the city of Christchurch into a full scale natural laboratory testing the structural and non-structural response of buildings under moderate to very severe earthquake shaking. The lessons learned from this, which have come at great cost socially and economically, are extremely valuable in increasing our understanding of whole building performance in severe earthquakes. Given current initiatives underway on both sides of the Tasman towards developing joint Australasian steel and composite steel/concrete design and construction standards that would span a very wide range of geological conditions and seismic zones, these lessons are relevant to both countries. This paper focusses on the performance of steel framed buildings in Christchurch city, with greatest emphasis on multi-storey buildings, but also covering single storey steel framed buildings and light steel framed housing. It addresses such issues as the magnitude and structural impact of the earthquake series, importance of good detailing, lack of observed column base hinging, the excellent performance of composite floors and it will briefly cover research underway to quantify some of these effects for use in design.
An as-built reinforced concrete (RC) frame building designed and constructed according to pre-1970s code design construction practice has been recently tested on the shake table at the University of Canterbury. The specimen, 1/2.5 scaled version of the original prototype, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. Following the benchmark test, a retrofit intervention has been proposed to rehabilitate the tested specimen. In this paper, detailed information on the assessment and design of the seismic retrofit procedure using GFRP (glass fibre reinforced polymer) materials is given for the whole frame. Hierarchy of strength and sequence of events (damage mechanisms) in the panel zone region are evaluated using a moment-axial load (M-N) interaction performance domain, according to a performance-based retrofit philosophy. Specific limit states or design objectives are targeted with attention given to both strength and deformation limits. In addition, an innovative retrofit solution using FRP anchor dowels for the corner beam-column joints with slabs is proposed. Finally, in order to provide a practical tool for engineering practice, the retrofit procedure is provided in a step-by step flowchart fashion.