Organisations play a vital role in assisting communities to recover from disasters. They are the key providers of goods and services needed in both response and recovery efforts. They provide the employment which both anchors people to place and supports the taxation base to allow for necessary recovery spending. Finally, organisations are an integral part of much day to day functioning contributing immensely to people’s sense of ‘normality’ and psychological wellbeing. Yet, despite their overall importance in the recovery process, there are significant gaps in our existing knowledge with regard to how organisations respond and recover following disaster. This research fills one part of this gap by examining collaboration as an adaptive strategy enacted by organisations in the Canterbury region of New Zealand, which was heavily impacted by a series of major earthquakes, occurring in 2010 and 2011. Collaboration has been extensively investigated in a variety of settings and from numerous disciplinary perspectives. However, there are few studies that investigate the role of collaborative approaches to support post-disaster business recovery. This study investigates the type of collaborations that have occurred and how they evolved as organisations reacted to the resource and environmental change caused by the disaster. Using data collected through semi-structured interviews, survey and document analysis, a rich and detailed picture of the recovery journey is created for 26 Canterbury organisations including 14 collaborators, six non-traders, five continued traders and one new business. Collaborations included two or more individual businesses collaborating along with two multi-party, place based projects. Comparative analysis of the organisations’ experiences enabled the assessment of decisions, processes and outcomes of collaboration, as well as insight into the overall process of business recovery. This research adopted a primarily inductive, qualitative approach, drawing from both grounded theory and case study methodologies in order to generate theory from this rich and contextually situated data. Important findings include the importance of creating an enabling context which allows organisations to lead their own recovery, the creation of a framework for effective post-disaster collaboration and the importance of considering both economic and other outcomes. Collaboration is found to be an effective strategy enabling resumption of trade at a time when there seemed few other options available. While solving this need, many collaborators have discovered significant and unexpected benefits not just in terms of long term strategy but also with regard to wellbeing. Economic outcomes were less clear-cut. However, with approximately 70% of the Central Business District demolished and rebuilding only gaining momentum in late 2014, many organisations are still in a transition stage moving towards a new ‘normal’.
A Transitional Imaginary: Space, Network and Memory in Christchurch is the outcome and the record of a particular event: the coming together of eight artists and writers in Ōtautahi Christchurch in November 2015, with the ambitious aim to write a book collaboratively over five days. The collaborative process followed the generative ‘book sprint’ method founded by our facilitator for the event, Adam Hyde, who has long been immersed in digital practices in Aotearoa. A book sprint prioritises the collective voice of the participants and reflects the ideas and understandings that are produced at the time in which the book was written, in a plurality of perspectives. Over one hundred books have been completed using the sprint methodology, covering subjects from software documentation to reflections on collaboration and fiction. We chose to approach writing about Ōtautahi Christchurch through this collaborative process in order to reflect the complexity of the post-quake city and the multiple paths to understanding it. The city has itself been a space of intensive collaboration in the post-disaster period. A Transitional Imaginary is a raw and immediate record, as much felt expression as argued thesis. In many ways the process of writing had the character of endurance performance art. The process worked by honouring the different backgrounds of the participants, allowing that dialogue and intensity could be generative of different forms of text, creating a knowledge that eschews a position of authority, working instead to activate whatever anecdotes, opinions, resources and experiences are brought into discussion. This method enables a dynamic of voices that merge here, separate there and interrupt elsewhere again. As in the contested process of rebuilding and reimagining Christchurch itself, the dissonance and counterpoint of writing reflects the form of conversation itself. This book incorporates conflict, agreement and the activation of new ideas through cross-fertilisation to produce a new reading of the city and its transition. The transitional has been given a specific meaning in Christchurch. It is a product of local theorising that encompasses the need for new modes of action in a city that has been substantially demolished (Bennett & Parker, 2012). Transitional projects, such as those created by Gap Filler, take advantage of the physical and social spaces created by the earthquake through activating these as propositions for new ways of being in the city. The transitional is in motion, looking towards the future. A Transitional Imaginary explores the transitional as a way of thinking and how we understand the city through art practices, including the digital and in writing.
Abstract The original intention for the Partnership Community Worker (PCW) project in 2006 was for it to be an extension of the Pegasus Health General Practice and furthermore to be a bridge between the community and primary healthcare. It was believed that a close working relationship between the Practice Nurse and the PCW would help the target population of Māori, Pacifica and low income people to address and overcome their perceived barriers to healthcare which included: finance, transport, anxiety, cultural issues, communication, or lack of knowledge. Seven years later although the PCW project has been deemed a success in the Canterbury District Health Board annual reports (2013-14) and community and government agencies, including the Christchurch Resettlement Service (2012), many of the Pegasus Health General Practices have not utilised the project to its full extent, hence the need for this research. I was interested in finding out in the first instance if the model had changed and, if so why, and in the second instance if the promotional material currently distributed by Pegasus Health Primary Health Organisation reflected the daily practice of the PCW. A combination of methods were used including: surveys to the Pegasus Health General Practices, interviews with PCWs, interviews with managers of both the PCW host organisations and referring agencies to the PCW project. All the questions asked of all the participants in this research were focussed on their own perception of the role of the PCW. Results showed that the model has changed and although the publications were not reflecting the original intention of the project they did reflect the daily practice of the PCWs who are now struggling to meet much wider community expectations and needs. Key Results: Partnership Community Worker (PCW) interviews: Seventeen PCWs of the 19 employed were interviewed face to face. A number expressed interest in more culturally specific training and some are pursuing qualifications in social work; for many pay parity is an issue. In addition, many felt overwhelmed by the expectations around clients with mental health issues and housing issues now, post-earthquakes. Medical Practice surveys: Surveys were sent to eighty-two Pegasus Health medical practices and of these twenty five were completed. Results showed the full capacity of the PCW role was not clearly understood by all with many believing it was mostly a transport service. Those who did understand the full complexity of the role were very satisfied with the outcomes. PCW Host Community Manager Interviews: Of the ten out of twelve managers interviewed, some wished for more communication with Pegasus Health management because they felt aspects of both the PCW role and their own role as managers had become blurred over time. Referring organisations: Fifteen of the fifty referring community or government organisations participated. The overall satisfaction of the service was high and some acknowledged the continuing need for PCWs to be placed in communities where they were well known and trusted. Moreover results also showed that both the Canterbury earthquakes 2010-2011 and the amalgamation of Partnership Health PHO and Pegasus Health Charitable Limited in 2013 have contributed to the change of the model. Further future research may also be needed to examine the long term effects on the people of Canterbury involved in community work during the 2011-2014 years.
Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building non-skeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.
Geological research in the immediate aftermath of the 2016 Kaikōura Earthquake, New Zealand, was necessary due to the importance and perishability of field data. It also reflects a real desire on the part of researchers to contribute not only to immediate scientific understanding but also to the societal recovery effort by enhancing knowledge of the event for the benefit of affected communities, civil defence organizations and regional and national decision makers. This commitment to outreach and engagement is consistent with the recent IAPG statement of Geoethics. More immediately, it was informed by experience of the 2010-2011 Canterbury Earthquake sequence. After that earlier disaster, intense interactions between researchers and various response agencies as well as local communities informed the development and dissemination of a set of ethical guidelines for researchers immediately following the Mw7.8 14 November 2016 Kaikōura Earthquake. In this presentation, I argue that ethical engagement of this kind is the key to gathering high quality research data immediately after the event. Creating trusting and mutually respectful, mutually beneficial relationships is also vital to ongoing engagement to facilitate further “in depth” research in collaboration with communities.
The Canterbury Earthquakes of 2010 and 2011 and subsequent re-organisation and rebuilding of schools in the region is initiating a rapid transitioning from traditional classrooms and individual teaching to flexible learning spaces (FLS’s) and co-teaching. This transition is driven by the Ministry of Education property division who have specific guidelines for designing new schools, re-builds and the five and ten year property plan requirements. Boards of Trustees, school leaders and teachers are faced with the challenge of reconceptualising teaching and learning from private autonomous learning environments to co-teaching in Flexible Learning Spaces provisioned for 50 to 180 children and two to six teachers in a single space. This process involves risks and opportunities especially for teachers and children. This research project investigates the key components necessary to create effective co-teaching relationships and environments. It explores the lessons learnt from the 1970’s open plan era and the views of 40 experienced practitioners and leaders with two or more years’ experience working in collaborative teaching and learning environments in sixteen New Zealand and Australian schools. The research also considers teacher collaboration and co-teaching as evidenced in literature. The findings lead to the identification of eight key components required to create effective collaborative teaching and learning environments which are discussed using three themes of student centeredness, effective pedagogy and collaboration. Six key recommendations are provided to support the effective co-teaching in a flexible learning space: 1. Situate learners at the centre 2. Develop shared understanding about effective pedagogy in a FLS 3. Develop skills of collaboration 4. Implement specific co-teaching strategies 5. Analyse the impact of co-teaching strategies 6. Strategically prepare for change and the future
“much of what we know about leadership is today redundant because it is literally designed for a different operating model, a different context, a different time” (Pascale, Sternin, & Sternin, p. 4). This thesis describes a project that was designed with a focus on exploring ways to enhance leadership capacity in non-government organisations operating in Christchurch, New Zealand. It included 20 CEOs, directors and managers from organisations that cover a range of settings, including education, recreation, and residential and community therapeutic support; all working with adolescents. The project involved the creation of a peer-supported professional learning community that operated for 14 months; the design and facilitation of which was informed by the Appreciative Inquiry principles of positive focus and collaboration. At the completion of the research project in February 2010, the leaders decided to continue their collective processes as a self-managing and sustaining professional network that has grown and in 2014 is still flourishing under the title LYNGO (Leaders of Youth focussed NGOs). Two compelling findings emerged from this research project. The first of these relates to efficacy of a complexity thinking framework to inform the actions of these leaders. The leaders in this project described the complexity thinking framework as the most relevant, resonant and dynamic approach that they encountered throughout the research project. As such this thesis explores this complexity thinking informed leadership in detail as the leaders participating in this project believed it offers an opportune alternative to more traditional forms of positional leadership and organisational approaches. This exploration is more than simply a rationale for complexity thinking but an iterative in-depth exploration of ‘complexity leadership in action’ which in Chapter 6 elaborates on detailed leadership tools and frameworks for creating the conditions for self-organisation and emergence. The second compelling finding relates to efficacy of Appreciative Inquiry as an emergent research and development process for leadership learning. In particular the adoption of two key principles; positive focus and inclusivity were beneficial in guiding the responsive leadership learning process that resulted in a professional learning community that exhibited high engagement and sustainability. Additionally, the findings suggest that complexity thinking not only acts as a contemporary framework for adaptive leadership of organisations as stated above; but that complexity thinking has much to offer as a framework for understanding leadership development processes through the application of Appreciative Inquiry (AI)-based principles. A consideration of the components associated with complexity thinking has promise for innovation and creativity in the development of leaders and also in the creation of networks of learning. This thesis concludes by suggesting that leaders focus on creating hybrid organisations, ones which leverage the strengths (and minimise the limitations) of self-organising complexity-informed organisational processes, while at the same time retaining many of the strengths of more traditional organisational management structures. This approach is applied anecdotally to the place where this study was situated: the post-earthquake recovery of Christchurch, New Zealand.
In this paper, we consider how religious leaders and Civil Defence authorities might collaborate to establish a two-way information conduit during the aftermath of a disaster. Using surveys and in-person interviews, clergy in different Christian denominations were asked about their roles in the earthquake, the needs of their congregations and the possibilities and obstacles to deeper collaboration with Civil Defence authorities.
In this paper we outline the process and outcomes of a multi-agency, multi-sector research collaboration, led by the Canterbury Earthquake Research Authority (CERA). The CERA Wellbeing Survey (CWS) is a serial, cross-sectional survey that is to be repeated six-monthly (in April and September) until the end of the CERA Act, in April 2016. The survey gathers self-reported wellbeing data to supplement the monitoring of the social recovery undertaken through CERA's Canterbury Wellbeing Index. Thereby informing a range of relevant agency decision-making, the CWS was also intended to provide the community and other sectors with a broad indication of how the population is tracking in the recovery. The primary objective was to ensure that decision-making was appropriately informed, with the concurrent aim of compiling a robust dataset that is of value to future researchers, and to the wider, global hazard and disaster research endeavor. The paper begins with an outline of both the Canterbury earthquake sequence, and the research context informing this collaborative project, before reporting on the methodology and significant results to date. It concludes with a discussion of both the survey results, and the collaborative process through which it was developed.
The University of Canterbury CEISMIC Canterbury Earthquake Digital Archive draws on the example of the Centre for History and New Media’s (CHNM) September 11 Archive, which was used to collect digital artefacts after the bombing of the World Trade Centre buildings in 2001, but has gone significantly further than this project in its development as a federated digital archive. The new University of Canterbury Digital Humanities Programme – initiated to build the archive – has gathered together a Consortium of major national organizations to contribute content to a federated archive based on principles of openness and collaboration derived directly from the international digital humanities community.
We present the initial findings from a study of adaptive resilience of lifelines organisations providing essential infrastructure services, in Christchurch, New Zealand following the earthquakes of 2010-2011. Qualitative empirical data was collected from 200 individuals in 11 organisations. Analysis using a grounded theory method identified four major factors that aid organisational response, recovery and renewal following major disruptive events. Our data suggest that quality of top and middle-level leadership, quality of external linkages, level of internal collaboration, ability to learn from experience, and staff well-being and engagement influence adaptive resilience. Our data also suggest that adaptive resilience is a process or capacity, not an outcome and that it is contextual. Post-disaster capacity/resources and post-disaster environment influence the nature of adaptive resilience.
The operation of telecommunication networks is critical during business as usual times, and becomes most vital in post-disaster scenarios, when the services are most needed for restoring other critical lifelines, due to inherent interdependencies, and for supporting emergency and relief management tasks. In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure appears to be underrepresented in the literature. The FP6 QuakeCoRE project “Performance of the Telecommunication Network during the Canterbury Earthquake Sequence” will provide a critical contribution to bridge this gap. Thanks to an unprecedented collaboration between national and international researchers and highly experienced asset managers from Chorus, data and evidences on the physical and functional performance of the telecommunication network after the Canterbury Earthquakes 2010-2011 have been collected and collated. The data will be processed and interpreted aiming to reveal fragilities and resilience of the telecommunication networks to seismic events
For the people of Christchurch and its wider environs of Canterbury in New Zealand, the 4th of September 2010 earthquake and the subsequent aftershocks were daunting. To then experience a more deadly earthquake five months later on the 22nd of February 2011 was, for the majority, overwhelming. A total of 185 people were killed and the earthquake and continuing aftershocks caused widespread damage to properties, especially in the central city and eastern suburbs. A growing body of literature consistently documents the negative impact of experiencing natural disasters on existing psychological disorders. As well, several studies have identified positive coping strategies which can be used in response to adversities, including reliance on spiritual and cultural beliefs as well as developing resilience and social support. The lifetime prevalence of severe mental health disorders such as posttraumatic stress disorder (PTSD) occurring as a result of experiencing natural disasters in the general population is low. However, members of refugee communities who were among those affected by these earthquakes, as well as having a past history of experiencing traumatic events, were likely to have an increased vulnerability. The current study was undertaken to investigate the relevance to Canterbury refugee communities of the recent Canterbury Earthquake Recovery Authority (CERA) draft recovery strategy for Christchurch post-earthquakes. This was accomplished by interviewing key informants who worked closely with refugee communities. These participants were drawn from different agencies in Christchurch including Refugee Resettlement Services, the Canterbury Refugee Council, CERA, and health promotion and primary healthcare organisations, in order to obtain the views of people who have comprehensive knowledge of refugee communities as well as expertise in local mainstream services. The findings from the semi-structured interviews were analysed using qualitative thematic analysis to identify common themes raised by the participants. The key informants described CERA’s draft recovery strategy as a significant document which highlighted the key aspects of recovery post disaster. Many key informants identified concerns regarding the practicality of the draft recovery strategy. For the refugee communities, some of those concerns included the short consultation period for the implementation phase of the draft recovery strategy, and issues surrounding communication and collaboration between refugee agencies involved in the recovery. This study draws attention to the importance of communication and collaboration during recovery, especially in the social reconstruction phase following a disaster, for all citizens but most especially for refugee communities.
This article argues that active coordination of research engagement after disasters has the potential to maximize research opportunities, improve research quality, increase end-user engagement, and manage escalating research activity to mitigate ethical risks posed to impacted populations. The focus is on the coordination of research activity after the 22nd February 2011 Mw6.2 Christchurch earthquake by the then newly-formed national research consortium, the Natural Hazards Research Platform, which included a social science research moratorium during the declared state of national emergency. Decisions defining this organisation’s functional and structural parameters are analyzed to identify lessons concerning the need for systematic approaches to the management of post disaster research, in collaboration with the response effort. Other lessons include the importance of involving an existing, broadly-based research consortium, ensuring that this consortium's coordination role is fully integrated into emergency management structures, and ensuring that all aspects of decision-making processes are transparent and easily accessed.
Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building nonskeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.
This section considers forms of collaboration in situated and community projects embedded in important spatial transformation processes in New Zealand cities. It aims to shed light on specific combinations of material and semantic aspects characterising the relation between people and their environment. Contributions focus on participative urban transformations. The essays that follow concentrate on the dynamics of territorial production of associations between multiple actors belonging both to civil society and constituted authority. Their authors were directly engaged in the processes that are reported and conceptualised, thereby offering evidence gained through direct hands-on experience. Some of the investigations use case studies that are conspicuous examples of the recent post-traumatic urban development stemming from the Canterbury earthquakes of 2010-2011. More precisely, these cases belong to the early phases of the programmes of the Christchurch recovery or the Wellington seismic prevention. The relevance of these experiences for the scope of this study lies in the unprecedented height of public engagement at local, national and international levels, a commitment reached also due to the high impact, both emotional and concrete, that affected the entire society.
The QuakeCoRE Emerging Researchers Chapter (QERC) is a network of students and emerging researchers composed of three chapters: Auckland, Canterbury, and Wellington. Our aim is to promote networking, collaboration, and knowledge sharing among emerging researchers in the earthquake resilience community. QERC does this by organising technical, social, and outreach events. As with everyone else during the pandemic crisis, QERC had to change its approach in organising events. However, instead of treating it as an obstacle, QERC utilised the lockdown period as an opportunity to connect the three chapters and organised more events than they usually would during normal times. In the 11 weeks that universities were closed and New Zealand was under Alert Levels 2, 3 and 4, QERC organised 15 various events such as research presentations, well-being workshops, a women's catch-up, and a trivia night. However, as the weeks went by, the novelty of online meetings faded and fewer people came to the virtual events. Therefore as soon as the country moved to Alert Level 1, the Chapters started organising in-person events, which members were eager to attend. Nonetheless, the option to join events remotely still remains and the three chapters continue to collaborate for various events.
This article examines the representation of Christchurch, New Zealand, student radio station RDU in the exhibition Alternative Radio at the Canterbury Museum in 2016. With the intention of ‘making visible what is invisible’ about radio broadcasting, the exhibition articulated RDU as a point of interconnection between the technical elements of broadcasting, the social and musical culture of station staff and volunteers, and the broader local and national music scenes. This paper is grounded in observations of the exhibitions and associated public programmes, and interviews with the key participants in the exhibition including the museum's exhibition designer and staff from RDU, who acted as independent practitioners in collaboration with the museum. Alternative Radio also addressed the aftermath of the major earthquake of 22 February 2011, when RDU moved into a customised horse truck after losing its broadcast studio. The exhibition came about because of the cultural resonance of the post-quake story, but also emphasised the long history of the station before that event, and located this small student radio station in the broader heritage discourse of the Canterbury museum, activating the historical, cultural, and personal memories of the station's participants and audiences.
Unreinforced masonry (URM) is a construction type that was commonly adopted in New Zealand between the 1880s and 1930s. URM construction is evidently vulnerable to high magnitude earthquakes, with the most recent New Zealand example being the 22 February 2011 Mw6.3 Christchurch earthquake. This earthquake caused significant damage to a majority of URM buildings in the Canterbury area and resulted in 185 fatalities. Many URM buildings still exist in various parts of New Zealand today, and due to their likely poor seismic performance, earthquake assessment and retrofit of the remaining URM building stock is necessary as these buildings have significant architectural heritage and occupy a significant proportion of the nation’s building stock. A collaborative research programme between the University of Auckland and Reid Construction Systems was conducted to investigate an economical yet effective solution for retrofitting New Zealand’s existing URM building stock. This solution adopts the shotcrete technique using an Engineered Cementitious Composite (ECC), which is a polyvinyl alcohol fibre reinforced mortar that exhibits strain hardening characteristics. Collaborations have been formed with a number of consulting structural engineers throughout New Zealand to develop innovative and cost effective retrofit solutions for a number of buildings. Two such case studies are presented in this paper. http://www.concrete2013.com.au/technical-program/
The 4 September, 22 February, and 13 June earthquakes experienced in Canterbury, New Zealand would have been significant events individually. Together they present a complex and unprecedented challenge for Canterbury and New Zealand. The repetitive and protracted nature of these events has caused widespread building and infrastructure damage, strained organisations’ financial and human resources and challenged insurer and investor confidence. The impact of the earthquakes was even more damaging coming in the wake of the worst worldwide recession since the great depression of the 1930s. However, where there is disruption there is also opportunity. Businesses and other organisations will drive the physical, economic and social recovery of Canterbury, which will be a dynamic and long-term undertaking. Ongoing monitoring of the impacts, challenges and developments during the recovery is critical to maintaining momentum and making effective mid-course adjustments. This report provides a synthesis of research carried out by the Resilient Organisations (ResOrgs) Research Programme1 at the University of Canterbury and Recover Canterbury in collaboration with Opus Central Laboratories (part of Opus International Consultants). The report includes discussions on the general state of the economy as well as data from three surveys (two conducted by ResOrgs and one by Recover Canterbury) on business impacts of the earthquakes, population movements and related economic recovery issues. This research and report offers two primary benefits:
The Canterbury earthquakes of 2010 and 2011 caused significant damage and disruption to the city of Christchurch, New Zealand. A Royal Commission was established to report on the causes of building failure as a result of the earthquakes as well as look at the legal and best-practice requirements for buildings in New Zealand Central Business Districts. The Royal Commission made 189 recommendations on a variety of matters including managing damaged buildings after an earthquake, the adequacy of building codes and standards, and the processes of seismic assessments of existing buildings to determine their earthquake vulnerability. In response the Ministry of Business, Innovation and Employment, the agency responsible for administering building regulation in New Zealand, established a work programme to assist with the Canterbury rebuild and to implement the lessons learned throughout New Zealand. The five primary work streams in the programme are: • Facilitating the Canterbury Rebuild • Structural Performance and Design Standards • Geotechnical and structural guidance • Existing Building Resilience • Post Disaster Building Management This paper provides more detail on each of the work streams. There has been significant collaboration between the New Zealand Government and the research community, technical societies, and engineering consultants, both within New Zealand and internationally, to deliver the programme and improve the resilience of the New Zealand built environment. This has presented major challenges for an extremely busy industry in the aftermath of the Canterbury earthquakes. The paper identifies the items of work that have been completed and the work that is still in progress at the time of writing.
While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.
Collective identity construction in organisations engaged in an inter-organisational collaboration (IOC), especially temporary IOCs set up in disaster situations, has received scant attention in the organisational studies literature yet collective identity is considered to be important in fostering effective IOC operations. This doctoral study was designed to add to our understanding about how collective identity is constituted throughout the entire lifespan of a particular temporary coopetitive (i.e., simultaneously collaborative and competitive) IOC formed in a post-disaster environment. To achieve this purpose, a qualitative case study of the Stronger Christchurch Infrastructure Rebuild Team (SCIRT), a time-bound coopetition formed to repair the horizontal infrastructure in Christchurch, New Zealand after the devastating 2011 Canterbury earthquakes, was undertaken. Using data from semi-structured interviews, field observations, and organisational documents and other artefacts, an inductive analytic method was employed to explore how internal stakeholders engaged with and co- constructed a collective SCIRT identity and reconciled this with their home organization identity. The analysis revealed that the SCIRT collective identity was an ongoing process, involving the interweaving of social, temporal, material and geospatial dimensions constructed through intersecting cycles of senior managers’ sensegiving and employees’ sensemaking across SCIRT’s five and a half years of existence. Senior management deliberately undertook identity work campaigns that used organisational rituals, artefacts, and spatial design to disseminate and encourage a sense of “we are all SCIRT”. However, there was no common sense of “we-ness”. Identification with SCIRT was experienced differently among different groups of employees and across time. Employees’ differing senses of collective identity were accounted for by their past, present, and anticipated future relationships with their home organisation, and also (re)shaped by the geosocial environments in which they worked. The study supports previous research claiming that collective identity is a process of recursive sensegiving and sensemaking between senior managers and employees. However, it extends the literature by revealing the imbricated nature of collective identity, how members’ sense of “who we are” can change across the entire lifetime of a temporary IOC, and how sociomateriality, temporality, and geosocial effects strongly intervene in employees’ emerging senses of collective identity. Moreover, the study demonstrates how the ongoing identity work can be embedded in a time-space frame that further accentuates the influence of temporality, especially the anticipated future, organisational rituals, artefacts, and the geosocial environment. The study’s primary contribution to theory is a processual model of collective identity that applies specifically to a temporary IOC involving coopetition. In doing so, it represents a more finely nuanced and situational model than existing models. At a practical level, this model suggests that managers need to appreciate that organisational artefacts, rituals, and the prevailing organisational geosocial environment are inextricably linked in processes that can be manipulated to enhance the construction of collective identity.
This poster provides a comparison between the strong ground motions observed in the 22 February 2011 Mw6.3 Christchurch earthquake with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. The destuction resulting from both of these events has been well documented, although tsunami was the principal cause of damage in the latter event, and less attention has been devoted to the impact of earthquake-induced ground motions. Despite Tokyo being located over 100km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were significant enough to cause structural damage and also significant liquefaction to loose reclaimed soils in Tokyo Bay. The author was fortunate enough (from the perspective of an earthquake engineer) to experience first-hand both of these events. Following the Tohoku event, the athor conducted various ground motion analyses and reconniassance of the Urayasu region in Tokyo Bay affected by liquefaction in collaboration with Prof. Kenji Ishihara. This conference is therefore a fitting opportunity in which to discuss some of authors insights obtained as a result of this first hand knowledge. Figure 1 illustrates the ground motions recorded in the Christchurch CBD in the 22 February 2011 and 4 September 2010 earthquakes, with that recorded in Tokyo Bay in the 11 March 2011 Tohoku earthquake. It is evident that these three ground motions vary widely in their amplitude and duration. The CBGS ground motion from the 22 February 2011 event has a very large amplitude (nearly 0.6g) and short duration (approx. 10s of intense shaking), as a result of the causal Mw6.3 rupture at short distance (Rrup=4km). The CBGS ground motion from the 4 September 2010 earthquake has a longer duration (approx. 30s of intense shaking), but reduced acceleration amplitude, as a result of the causal Mw7.1 rupture at a short-to-moderate distance (Rrup=14km). Finally, the Urayasu ground motion in Tokyo bay during the 11 March 2011 Tohoku earthquake exhibits an acceleration amplitude similar to the 4 September 2010 CBGS ground motion, but a significantly larger duration (approx 150s of intense shaking). Clearly, these three different ground motions will affect structures and soils in different ways depending on the vibration characteristics of the structures/soil, and the potential for strength and stiffness degradation due to cumulative effects. Figure 2 provides a comparison between the arias intensities of the several ground motion records from the three different events. It can be seen that the arias intensities of the ground motions in the Christchurch CBD from the 22 February 2011 earthquake (which is on average AI=2.5m/s) is approximately twice that from the 4 September 2010 earthquake (average AI≈1.25). This is consistent with a factor of approximately 1.6 obtained by Cubrinovski et al. (2011) using the stress-based (i.e.PGA-MSF) approach of liquefaction triggering. It can also be seen that the arias intensity of the ground motions recorded in Tokyo during the 2011 Tohoku earthquake are larger than ground motions in the Christchurch CBD from the 4 September 2011 earthquake, but smaller than those of the 22 February 2011 earthquake. Based on the arias intensity liquefaction triggering approach it can therefore be concluded that the ground motion severity, in terms of liquefaction potential, for the Tokyo ground motions is between those ground motions in Christchurch CBD from the 4 September 2010 and 22 February 2011 events.
When disasters and crises, both man-made and natural, occur, resilient higher education institutions adapt in order to continue teaching and research. This may necessitate the closure of the whole institution, a building and/or other essential infrastructure. In disasters of large scale the impact can be felt for many years. There is an increasing recognition of the need for disaster planning to restructure educational institutions so that they become more resilient to challenges including natural disasters (Seville, Hawker, & Lyttle, 2012).The University of Canterbury (UC) was affected by seismic events that resulted in the closure of the University in September 2010 for 10 days and two weeks at the start of the 2011 academic year This case study research describes ways in which e-learning was deployed and developed by the University to continue and even to improve learning and teaching in the aftermath of a series of earthquakes in 2010 and 2011. A qualitative intrinsic embedded/nested single case study design was chosen for the study. The population was the management, support staff and educators at the University of Canterbury. Participants were recruited with purposive sampling using a snowball strategy where the early key participants were encouraged to recommend further participants. Four sources of data were identified: (1) documents such as policy, reports and guidelines; (2) emails from leaders of the colleges and academics; (3) communications from senior management team posted on the university website during and after the seismic activity of 2010 and 2011; and (4) semi-structured interviews of academics, support staff and members of senior management team. A series of inductive descriptive content analyses identified a number of themes in the data. The Technology Acceptance Model 2 (Venkatesh & Davis, 2000) and the Indicator of Resilience Model (Resilient Organisations, 2012) were used for additional analyses of each of the three cases. Within the University case, the cases of two contrasting Colleges were embedded to produce a total of three case studies describing e-learning from 2000 - 2014. One contrast was the extent of e-learning deployment at the colleges: The College of Education was a leader in the field, while the College of Business and Law had relatively little e-learning at the time of the first earthquake in September 2010. The following six themes emerged from the analyses: Communication about crises, IT infrastructure, Availability of e-learning technologies, Support in the use of e-learning technologies, Timing of crises in academic year and Strategic planning for e-learning. One of the findings confirmed earlier research that communication to members of an organisation and the general public about crises and the recovery from crises is important. The use of communication channels, which students were familiar with and already using, aided the dissemination of the information that UC would be using e-learning as one of the options to complete the academic year. It was also found that e-learning tools were invaluable during the crises and facilitated teaching and learning whilst freeing limited campus space for essential activities and that IT infrastructure was essential to e-learning. The range of e-learning tools and their deployment evolved over the years influenced by repeated crises and facilitated by the availability of centrally located support from the e-Learning support team for a limited set of tools, as well as more localised support and collaboration with colleagues. Furthermore, the reasons and/or rate of e-learning adoption in an educational institution during crises varied with the time of the academic year and the needs of the institution at the time. The duration of the crises also affected the adoption of e-learning. Finally, UC’s lack of an explicit e-learning strategy influenced the two colleges to develop college-specific e-learning plans and those College plans complemented the incorporation of e-learning for the first time in the University’s teaching and learning strategy in 2013. Twelve out of the 13 indicators of the Indicators of Resilience Model were found in the data collected for the study and could be explained using the model; it revealed that UC has become more resilient with e-learning in the aftermath of the seismic activities in 2010 and 2011. The interpretation of the results using TAM2 demonstrated that the adoption of technologies during crises aided in overcoming barriers to learning at the time of the crisis. The recommendations from this study are that in times of crises, educational institutions take advantage of Cloud computing to communicate with members of the institution and stakeholders. Also, that the architecture of a university’s IT infrastructure be made more resilient by increasing redundancy, backup and security, centralisation and Cloud computing. In addition, when under stress it is recommended that new tools are only introduced when they are essential.