Search

found 11 results

Research papers, Victoria University of Wellington

<b>In the late 1960s the Wellington City Council surveyed all the commercial buildings in the city and marked nearly 200 as earthquake prone. The owners were given 15 years to either strengthen or demolish their buildings. The end result was mass demolition throughout the seventies and eighties.¹ Prompted by the Christchurch earthquakes, once again the council has published a list of over 630 earthquake prone buildings that need to be strengthened or demolished by 2030.²Of these earthquake prone buildings, the majority were built between 1880 and 1930, with 125 buildings appearing on the Wellington City Council Heritage Building List.³ This list accounts for a significant proportion of character buildings in the city. There is a danger that the aesthetic integrity of our city will be further damaged due to the urgent need to strengthen these buildings. Many of the building owners are resistant because of the high cost. By adapting these buildings to house co-workspaces, we can gain more than just the retention of the building’s heritage. The seismic upgrade provides the opportunity for the office space to be redesigned to suit changes in the ways we work. Through a design-based research approach this thesis proposes a framework that clarifies the process of adapting Wellington’s earthquake prone heritage buildings to accommodate co-working. This framework deals with the key concepts of program, structure and heritage. The framework is tested on one of Wellington’s earthquake prone heritage buildings, the Wellington Working Men’s Club, in order to demonstrate what can be gained from this strengthening process. ¹ Reid, J., “Hometown Boomtown,” in NZ On Screen (Wellington, 1983).</b> ² Wellington City Council, List of Earthquake Prone Buildings as at 06/03/2017. (Wellington: Absolutely Positively Wellington. 2017). ³ ibid. 

Research papers, Lincoln University

During the 21st century, New Zealand has experienced increasing public concern over the quality of the design and appearance of new developments, and their effects on the urban environment. In response to this, a number of local authorities developed a range of tools to address this issue, including urban design panels to review proposals and provide independent advice. Following the 2010 and 2011 Canterbury earthquake sequence, the commitment to achieve high quality urban design within Christchurch was given further importance, with the city facing the unprecedented challenge of rebuilding a ‘vibrant and successful city’. The rebuild and regeneration reinforced the need for independent design review, putting more focus and emphasis on the role and use of the urban design panel; first through collaboratively assisting applicants in achieving a better design outcome for their development by providing an independent set of eyes on their design; and secondly in assisting Council officers in forming their recommendations on resource consent decisions. However, there is a perception that urban design and the role of the urban design panel is not fully understood, with some stakeholders arguing that Council’s urban design requirements are adding cost and complexity to their developments. The purpose of this research was to develop a better understanding on the role of the Christchurch urban design panel post-earthquake in the central city; its direct and indirect influence on the built environment; and the deficiencies in the broader planning framework and institutional settings that it might be addressing. Ultimately, the perceived role of the Panel is understood, and there is agreement that urban design is having a positive influence on the built environment, albeit viewed differently amongst the varying groups involved. What has become clear throughout this research is that the perceived tension between the development community and urban design well and truly exists, with the urban design panel contributing towards this. This tension is exacerbated further through the cost of urban design to developers, and the drive for financial return from their investments. The panel, albeit promoting a positive experience, is simply a ‘tick box’ exercise for some, and as the research suggests, groups or professional are determining themselves what constitutes good urban design, based on their attitude, the context in which they sit and the financial constraints to incorporate good design elements. It is perhaps a bleak time for urban design, and more about building homes.

Research papers, University of Canterbury Library

Background Liquefaction induced land damage has been identified in more than 13 notable New Zealand earthquakes within the past 150 years, as presented on the timeline below. Following the 2010-2011 Canterbury Earthquake Sequence (CES), the consequences of liquefaction were witnessed first-hand in the city of Christchurch and as a result the demand for understanding this phenomenon was heightened. Government, local councils, insurers and many other stakeholders are now looking to research and understand their exposure to this natural hazard.

Research papers, The University of Auckland Library

This thesis revisits the topic of earthquake recovery in Christchurch City more than a decade after the Canterbury earthquakes. Despite promising visions of a community reconnected and a sustainable and liveable city, significant portions of the city’s core – the Red Zone – remain dilapidated and “eerily empty”. At the same time, new developments in other areas have proven to be alienated or underutilised. Currently, the Canterbury Earthquake Recovery Authority’s plans for the rebuilding highlight the delivery of more residential housing to re-populate the city centre. However, prevalent approaches to housing development in Christchurch are ineffective for building an inclusive and active community. Hence, the central inquiry of the thesis is how the development of housing complexes can revitalise the Red Zone within the Christchurch city centre. The inquiry has been carried out through a research-through-design methodology, recognising the importance of an in-depth investigation that is contextualised and combined with the intuition and embodied knowledge of the designer. The investigation focuses on a neglected site in the Red Zone in the heart of Christchurch city, with significant Victorian and Edwardian Baroque heritage buildings, including Odeon Theatre, Lawrie & Wilson Auctioneers, and Sol Square, owned by The Regional Council Environment Canterbury. The design inquiry argues, develops, and is carried through a place-assemblage lens to housing development for city recovery, which recognizes the significance of socially responsive architecture that explores urban renewal by forging connections within the social network. Therefore, place-assemblage criteria and methods for developing socially active and meaningful housing developments are identified. Firstly, this thesis argues that co-living housing models are more focused on people relations and collective identity than the dominant developer-driven housing rebuilds, as they prioritise conduits for interaction and shared social meaning and practices. Secondly, the adaptive reuse of derelict heritage structures is proposed to reinvigorate the urban fabric, as heritage is seen to be conceived as and from a social assemblage of people. The design is realised by the principles outlined in the ICOMOS charter, which involves incorporating the material histories of existing structures and preserving the intangible heritage of the site by ensuring the continuity of cultural practices. Lastly, design processes and methods are also vital for place-sensitive results, which pay attention to the site’s unique characteristics to engage with local stakeholders and communities. The research explores place-assemblage methods of photographic extraction, the drawing of story maps, precedent studies, assemblage maps, bricolages, and paper models, which show an assembly of layers that piece together the existing heritage, social conduits, urban commons and housing to conceptualise the social network within its place.

Research papers, Victoria University of Wellington

“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011).  Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008).  In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists.  But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings.  Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch.  The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions.  Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities.  Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.

Research papers, The University of Auckland Library

Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.

Research papers, Victoria University of Wellington

On the 22nd of February, 2011 the city of Christchurch, New Zealand was crippled by a colossal earthquake. 185 people were killed, thousands injured and what remained was a city left in destruction and ruin. Thousands of Christchurch properties and buildings were left damaged beyond repair and the rich historical architecture of the Canterbury region had suffered irreparably.  This research will conduct an investigation into whether the use of mixed reality can aid in liberating Christchurch’s rich architectural heritage when applied to the context of destructed buildings within Christchurch.  The aim of this thesis is to formulate a narrative around the embodiment of mixed reality when subjected to the fragmentary historical architecture of Christchurch. Mixed reality will aspire to act as the defining ligature that holds the past, present and future of Christchurch’s architectural heritage intact as if it is all part of the same continuum.  This thesis will focus on the design of a memorial museum within a heavily damaged historical trust registered building due to the Christchurch earthquake. It is important and relevant to conceive the idea of such a design as history is what makes everything we know. The memories of the past, the being of the now and the projection of the future is the basis and fundamental imperative in honouring the city and people of Christchurch. Using the technologies of Mixed Reality and the realm of its counter parts the memorial museum will be a definitive proposition of desire in providing a psychological and physical understanding towards a better Christchurch, for the people of Christchurch.  This thesis serves to explore the renovation possibilities of the Canterbury provincial council building in its destructed state to produce a memorial museum for the Christchurch earthquake. The design seeks to mummify the building in its raw state that sets and develops the narrative through the spaces. The design intervention is kept at a required minimum and in doing so manifests a concentrated eloquence to the derelict space. The interior architecture unlocks the expression of history and time encompassed within a destructive and industrialised architectural dialogue. History is the inhabitant of the building, and using the physical and virtual worlds it can be set free.  This thesis informs a design for a museum in central Christchurch that celebrates and informs the public on past, present and future heritage aspects of Christchurch city. Using mixed reality technologies the spatial layout inside will be a direct effect of the mixed reality used and the exploration of the physical and digital heritage aspects of Christchurch. The use of technology in today’s world is so prevalent that incorporating it into a memorial museum for Christchurch would not only be interesting and exploratory but also offer a sense of pushing forward and striving beyond for a newer, fresher Christchurch. The memorial museum will showcase a range of different exhibitions that formulate around the devastating Christchurch earthquake. Using mixed reality technologies these exhibitions will dictate the spaces inside dependant on their various applications of mixed reality as a technology for architecture. Research will include; what the people of Canterbury are most dear to in regards to Christchurch’s historical environment; the use of mixed reality to visualise digital heritage, and the combination of the physical and digital to serve as an architectural mediation between what was, what is and what there could be.

Research papers, Lincoln University

Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.

Research papers, University of Canterbury Library

The use of post-earthquake cordons as a tool to support emergency managers after an event has been documented around the world. However, there is limited research that attempts to understand the use, effectiveness, inherent complexities, impacts and subsequent consequences of cordoning once applied. This research aims to fill that gap by providing a detailed understanding of first, the cordons and associated processes, and their implications in a post-earthquake scenario. We use a qualitative method to understand cordons through case studies of two cities where it was used in different temporal and spatial scales: Christchurch (2011) and Wellington (Kaikōura earthquake 2016), New Zealand. Data was collected through 21 expert interviews obtained through purposive and snowball sampling of key informants who were directly or indirectly involved in a decision-making role and/or had influence in relation to the cordoning process. The participants were from varying backgrounds and roles i.e. emergency managers, council members, business representatives, insurance representatives, police and communication managers. The data was transcribed, coded in Nvivo and then grouped based on underlying themes and concepts and then analyzed inductively. It is found that cordons are used primarily as a tool to control access for the purpose of life safety and security. But cordons can also be adapted to support recovery. Broadly, it can be synthesized and viewed based on two key aspects, ‘decision-making’ and ‘operations and management’, which overlap and interact as part of a complex system. The underlying complexity arises in large part due to the multitude of sectors it transcends such as housing, socio-cultural requirements, economics, law, governance, insurance, evacuation, available resources etc. The complexity further increases as the duration of cordon is extended.

Research papers, Victoria University of Wellington

The demand for a new approach to safeguarding New Zealand’s endangered historic buildings was identified as a result of the recent increase in building code and strengthening requirements following the Christchurch earthquakes of 2010-2011. The Wellington City Council identified 266 heritage buildings in the city that must be either strengthened or demolished to address these increased requirements. This thesis explores this threat as an opportunity for researching how contemporary design interventions can be challenged to both strengthen and become active participants in the ongoing history of New Zealand’s potentially endangered historic buildings. This thesis challenges the current approach of completely ‘restoring’ 19th-20th century historic buildings in New Zealand, to develop techniques that structurally reinforce historic buildings while inviting the progressive weathering of a building to remain as a testament to its history. This thesis proposes a structural intervention that is responsive to the progressive history of historic buildings, simultaneously introducing a contemporary structural intervention that both participates in and compliments the progressive historic transformations of the vehicle. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the life of a building, while fully restored buildings only enable visitors to witness the original form of the building. This thesis proposes a model for contemporary intervention within historic buildings that draws a design intervention from seismic strengthening.The notion of layering is explored as a design approach to incorporate the contemporary with the historic as an additional layer of exposed on-going history, thereby further exposing the layers of history evident within New Zealand’s historic buildings. This thesis combines layering theories of architects Louis Kahn and Carlo Scarpa with related theories of installation artist Mary Miss. The theoretical imperatives of Scarpa and Kahn are explored as a tool of engagement for the junction between the contemporary and historic building materials, and the work of Marry Miss is explored as a design approach for developing a contemporary intervention that references the layered historic building while inviting new means of occupancy between layers. The selected vehicle for the design research investigation is the Albemarle Hotel on Ghuznee Street in Wellington. The techniques proposed in this thesis to strengthen the Albemarle Hotel suggest an approach that might be applied to New Zealand’s wider body of historic buildings that constitute New Zealand’s heritage fabric, ultimately protecting them from demolition while preserving additional layers of their historic narratives. Over all the design research experiments suggest that contemporary interventions derived from structural strengthening may be a viable and cost-effective method of re-inhabiting New Zealand’s endangered heritage buildings, avoiding demolition and securing New Zealand’s heritage for future generations. Research Questions: This thesis challenges the current economically unsustainable approach of laterally reinforcing and completely ‘restoring’ 19th-20th century historic buildings in New Zealand. This thesis argues that current historic buildings in semi-decayed states in fact enable visitors to witness multiple stages in the on-going life of a building. Can the weathered state of New Zealand's heritage buildings be proactively retained and celebrated as witnesses to their history? Can new lateral reinforcing requirements be conceived as active participants in revealing the on-going history of New Zealand's historic buildings?

Research papers, The University of Auckland Library

The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.