Using case studies from the 2010-2011 Canterbury, New Zealand earthquake sequence, this study assesses the accuracies of paleoliquefaction back-analysis methods and explores the challenges, techniques, and uncertainties associated with their application. While liquefaction-based back-analyses have been widely used to estimate the magnitudes of paleoearthquakes, their uncertain efficacies continue to significantly affect the computed seismic hazard in regions where they are relied upon. Accordingly, their performance is evaluated herein using liquefaction data from modern earthquakes with known magnitudes. It is shown that when the earthquake source location and mechanism are known, back-analysis methods are capable of accurately deriving seismic parameters from liquefaction evidence. However, because the source location and mechanism are often unknown in paleoseismic studies, and because accurate interpretation is shown to be more difficult in such cases, new analysis techniques are proposed herein. An objective parameter is proposed to geospatially assess the likelihood of any provisional source location, enabling an analyst to more accurately estimate the magnitude of a liquefaction-inducing paleoearthquake. This study demonstrates the application of back-analysis methods, provides insight into their potential accuracies, and provides a framework for performing paleoliquefaction analyses worldwide.
Severe liquefaction was repeatedly observed during the 2010 - 2011 C hristchurch earthquake s , particularly affecting deposits of fine sands and silty sands of recent fluvial or estuarine origin. The effects of liquefaction included major sliding of soil tow ard water bodies ( i.e. lateral spreading ) rang ing from centimetres to several metres. In this paper, a series of undrained cyclic torsional shear tests were conducted to evaluate the liquefaction and extremely large deformation properties of Christchurch b oiled sand . In these tests, the simple shear conditions were reproduced in order to apply realistic stress conditions that soil s experience in the field during horizontal seismic shaking. Several hollow cylindrical medium dense specimens ( D r = 50%) were pr epared by pluviation method, isotropically consolidated at an effective stress of 100 kPa and then cyclically sheared under undrained conditions up to 10 0% double amplitude shear strain (γ DA ) . The cyclic strength at different levels of γ DA of 7.5%, 15%, 3 0 % and 6 0%, development of extremely large post - liquefaction deformation and shear strain locali s ation properties were assessed from the analysis of the effective stress paths and stress - strain responses . To reveal possible distinctiveness, the cyclic undra ined behaviour of CHCH boiled sand was compared with that of Toyoura sand previously examined under similar testing conditions
Data from the 2010-2011 Canterbury earthquake sequence (CES) provides an unprecedented opportunity to assess and advance the current state of practice for evaluating liquefaction triggering. Towards this end, select case histories from the CES are used herein to assess the predictive capabilities of three alternative CPT-based simplified liquefaction evaluation procedures: Robertson and Wride (1998); Moss et al. (2006); and Idriss and Boulanger (2008). Additionally, the Liquefaction Potential Index (LPI) framework for predicting the severity of surficial liquefaction manifestations is also used to assess the predictive capabilities of the liquefaction evaluation procedures. Although it is not without limitations, use of the LPI framework for this purpose circumvents the need for selecting “critical” layers and their representative properties for study sites, which inherently involves subjectivity and thus has been a point of contention among researchers. It was found that while all the assessed liquefaction triggering evaluation procedures performed well for the parameter ranges of the sites analyzed, the procedure proposed by Idriss and Boulanger (2008) yielded predictions that are more consistent with field observations than the other procedures. However, use of the Idriss and Boulanger (2008) procedure in conjunction with a Christchurch-specific correlation to estimate fines content showed a decreased performance relative to using a generic fines content correlation. As a result, the fines correction for the Idriss and Boulanger (2008) procedure needs further study.
High-Force-to-Volume lead dampers (HF2V) have been recently developed through an experimental research program at University of Canterbury – New Zealand. Testing of the device and applications on beam column joints have demonstrated stable hysteretic behaviour with almost no damage. This paper reports testing of HF2V devices with straight, bulged and constricted shaft configurations subjected to velocities of 0.15 - 5.0mm/s. The effect of the shaft configuration on the hysteresis loop shape, design relationships and the effect of the velocity on the resistive force of the device are described. Results show that hysteresis loop shape of the device is almost square regardless of the shaft configuration, and that devices are characterized by noticeable velocity dependence in the range of 0.15-1.0mm/s.
Between September 2010 and February 2012 (a period of 18 months) the Canterbury region of New Zealand has experienced over 10,000 earthquakes (Nicholls, 2012). This report is the first in a series that will describe the impact of the Canterbury earthquake on businesses. This initial report gives a high level overview of the earthquake events and the impacts on the Canterbury economy and businesses. This report is intended to provide background and context for more in-depth analyses to come in future reports.
Organisations locate strategically within Business Districts (CBDs) in order to cultivate their image, increase their profile, and improve access to customers, suppliers, and services. While CBDs offer an economic benefit to organisations, they also present a unique set of hazard vulnerabilities and planning challenges for businesses. As of May 2012, the Christchurch CBD has been partially cordoned off for over 14 months. Economic activity within the cordoned CBD, which previously contained 6,000 businesses and over 51,000 workers, has been significantly diminished and organisations have been forced to find new ways of operating. The vulnerabilities and resilience of CBDs not only influences outcomes for CBD organisations, but also the broader interconnected (urban/regional/national) system. A CBD is a hub of economic, social, and built infrastructure within a network of links and nodes. When the hub is disrupted all of the people, objects, and transactions that usually flow into and out of the hub must be redirected elsewhere. In an urban situation this means traffic jams in peripheries of the city, increased prices of commercial property, and capital flight; all of which are currently being faced in Canterbury. This report presents the lessons learned from organisations in CBDs affected by the Canterbury earthquakes. Here we focus on the Christchurch CBD; however, several urban town centres were extensively disrupted by the earthquakes. The statistics and discussion presented in this report are based on the results of an ongoing study conducted by Resilient Organisations (www.resorgs.org.nz). The data was captured using two questionnaire surveys of Canterbury organisations (issued November 2010 and May 2011), interviews with key informants, and in-depth case studies of organisations. Several industry sectors were sampled, and geographic samples of organisations in the Christchurch CBD, Lyttelton, and the Kaiapoi town centre were also collected. Results in this report describing “non-CBD organisations” refer to all organisations outside of the Christchurch CBD, Lyttelton, and Kaiapoi town centres.
This report presents the simplified seismic assessment of a case study reinforced concrete (RC) building following the newly developed and refined NZSEE/MBIE guidelines on seismic assessment (NZSEE/MBIE, semi-final draft 26 October 2016). After an overview of the step-by-step ‘diagnostic’ process, including an holistic and qualitative description of the expected vulnerabilities and of the assessment strategy/methodology, focus is given, whilst not limited, to the implementation of a Detailed Seismic Assessment (DSA) (NZSEE/MBIE, 2016c). The DSA is intended to provide a more reliable and consistent outcome than what can be provided by an initial seismic assessment (ISA). In fact, while the Initial Seismic Assessment (ISA), of which the Initial Evaluation Procedure is only a part of, is the more natural and still recommended first step in the overall assessment process, it is mostly intended to be a coarse evaluation involving as few resources as reasonably possible. It is thus expected that an ISA will be followed by a Detailed Seismic Assessment (DSA) not only where the threshold of 33%NBS is not achieved but also where important decisions are intended that are reliant on the seismic status of the building. The use of %NBS (% New Building Standard) as a capacity/demand ratio to describe the result of the seismic assessment at all levels of assessment procedure (ISA through to DSA) is deliberate by the NZSEE/MBIE guidelines (Part A) (NZSEE/MBIE 2016a). The rating for the building needs only be based on the lowest level of assessment that is warranted for the particular circumstances. Discussion on how the %NBS rating is to be determined can be found in Section A3.3 (NZSEE/MBIE 2016a), and, more specifically, in Part B for the ISA (NZSEE/MBIE 2016b) and Part C for the DSA (NZSEE/MBIE 2016c). As per other international approaches, the DSA can be based on several analysis procedures to assess the structural behaviour (linear, nonlinear, static or dynamic, force or displacement-based). The significantly revamped NZSEE 2016 Seismic Assessment Guidelines strongly recommend the use of an analytical (basically ‘by hand’) method, referred to the Simple Lateral Mechanism Analysis (SLaMA) as a first phase of any other numerically-based analysis method. Significant effort has thus been dedicated to provide within the NZSEE 2016 guidelines (NZSEE/MBIE 2016c) a step-by-step description of the procedure, either in general terms (Chapter 2) or with specific reference to Reinforced Concrete Buildings (Chapter 5). More specifically, extract from the guidelines, NZSEE “recommend using the Simple Lateral Mechanism Analysis (SLaMA) procedure as a first step in any assessment. While SLaMA is essentially an analysis technique, it enables assessors to investigate (and present in a simple form) the potential contribution and interaction of a number of structural elements and their likely effect on the building’s global capacity. In some cases, the results of a SLaMA will only be indicative. However, it is expected that its use should help assessors achieve a more reliable outcome than if they only carried out a detailed analysis, especially if that analysis is limited to the elastic range For complex structural systems, a 3D dynamic analysis may be necessary to supplement the simplified nonlinear Simple Lateral Mechanism Analysis (SLaMA).” This report presents the development of a full design example for the the implementation of the SLaMA method on a case study buildings and a validation/comparison with a non-linear static (pushover) analysis. The step-by-step-procedure, summarized in Figure 1, will be herein demonstrated from a component level (beams, columns, wall elements) to a subassembly level (hierarchy of strength in a beam-column joint) and to a system level (frame, C-Wall) assuming initially a 2D behaviour of the key structural system, and then incorporating a by-hand 3D behaviour (torsional effects).
This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.
OPINION: Associate Professor MARK QUIGLEY, from the University of Canterbury's department of geological sciences, and Dr MATTHEW HUGHES, from its department of civil and natural resources engineering, survey the changing landscape of post-quake Christchurch.
The paper presents preliminary findings from comprehensive research studies on the liquefaction-induced damage to buildings and infrastructure in Christchurch during the 2010-2011 Canterbury earthquakes. It identifies key factors and mechanisms of damage to road bridges, shallow foundations of CBD buildings and buried pipelines, and highlights the implications of the findings for the seismic analysis and design of these structures.
This is an interim report from the research study performed within the NHRP Research Project “Impacts of soil liquefaction on land, buildings and buried pipe networks: geotechnical evaluation and design, Project 3: Seismic assessment and design of pipe networks in liquefiable soils”. The work presented herein is a continuation of the comprehensive study on the impacts of Christchurch earthquakes on the buried pipe networks presented in Cubrinovski et al. (2011). This report summarises the performance of Christchurch City’s potable water, waste water and road networks through the 2010-2011 Canterbury Earthquake Sequence (CES), and particularly focuses on the potable water network. It combines evidence based on comprehensive and well-documented data on the damage to the water network, detailed observations and interpretation of liquefaction-induced land damage, records and interpretations of ground motion characteristics induced by the Canterbury earthquakes, for a network analysis and pipeline performance evaluation using a GIS platform. The study addresses a range of issues relevant in the assessment of buried networks in areas affected by strong earthquakes and soil liquefaction. It discusses performance of different pipe materials (modern flexible pipelines and older brittle pipelines) including effects of pipe diameters, fittings and pipeline components/details, trench backfill characteristics, and severity of liquefaction. Detailed breakdown of key factors contributing to the damage to buried pipes is given with reference to the above and other relevant parameters. Particular attention is given to the interpretation, analysis and modelling of liquefaction effects on the damage and performance of the buried pipe networks. Clear link between liquefaction severity and damage rate for the pipeline has been observed with an increasing damage rate seen with increasing liquefaction severity. The approach taken here was to correlate the pipeline damage to LRI (Liquefaction Resistance Index, newly developed parameter in Cubrinovski et al., 2011) which represents a direct measure for the soil resistance to liquefaction while accounting for the seismic demand through PGA. Key quality of the adopted approach is that it provides a general methodology that in conjunction with conventional methods for liquefaction evaluation can be applied elsewhere in New Zealand and internationally. Preliminary correlations between pipeline damage (breaks km-1), liquefaction resistance (LRI) and seismic demand (PGA) have been developed for AC pipes, as an example. Such correlations can be directly used in the design and assessment of pipes in seismic areas both in liquefiable and non-liquefiable areas. Preliminary findings on the key factors for the damage to the potable water pipe network and established empirical correlations are presented including an overview of the damage to the waste water and road networks but with substantially less detail. A comprehensive summary of the damage data on the buried pipelines is given in a series of appendices.
In the aftermath of the 22 February 2011 earthquake, the Natural Hazards Research Platform (NHRP) initiated a series of Short Term Recovery Projects (STRP) aimed at facilitating and supporting the recovery of Christchurch from the earthquake impacts. This report presents the outcomes of STRP 6: Impacts of Liquefaction on Pipe Networks, which focused on the impacts of liquefaction on the potable water and wastewater systems of Christchurch. The project was a collaborative effort of NHRP researchers with expertise in liquefaction, CCC personnel managing and designing the systems and a geotechnical practitioner with experience/expertise in Christchurch soils and seismic geotechnics.
Decision making on the reinstatement of the Christchurch sewer system after the Canterbury (New Zealand) earthquake sequence in 2010–2011 relied strongly on damage data, in particular closed circuit television (CCTV). This paper documents that process and considers how data can influence decision making. Data are analyzed on 33,000 pipes and 13,000 repairs and renewals. The primary findings are that (1) there should be a threshold of damage per pipe set to make efficient use of CCTV; (2) for those who are estimating potential damage, care must be taken in direct use of repair data without an understanding of the actual damage modes; and (3) a strong correlation was found between the ratio of faults to repairs per pipe and the estimated peak ground velocity. Taken together, the results provide evidence of the extra benefit that damage data can provide over repair data for wastewater networks and may help guide others in the development of appropriate strategies for data collection and wastewater pipe decisions after disasters.
Deconstruction, at the end of the useful life of a building, produces a considerable amount of materials which must be disposed of, or be recycled / reused. At present, in New Zealand, most timber construction and demolition (C&D) material, particularly treated timber, is simply waste and is placed in landfills. For both technical and economic reasons (and despite the increasing cost of landfills), this position is unlikely to change in the next 10 – 15 years unless legislation dictates otherwise. Careful deconstruction, as opposed to demolition, can provide some timber materials which can be immediately re-used (eg. doors and windows), or further processed into other components (eg. beams or walls) or recycled (‘cascaded’) into other timber or composite products (e.g. fibre-board). This reusing / recycling of materials is being driven slowly in NZ by legislation, the ‘greening’ of the construction industry and public pressure. However, the recovery of useful material can be expensive and uneconomic (as opposed to land-filling). In NZ, there are few facilities which are able to sort and separate timber materials from other waste, although the soon-to-be commissioned Burwood Resource Recovery Park in Christchurch will attempt to deal with significant quantities of demolition waste from the recent earthquakes. The success (or otherwise) of this operation should provide good information as to how future C&D waste will be managed in NZ. In NZ, there are only a few, small scale facilities which are able to burn waste wood for energy recovery (e.g. timber mills), and none are known to be able to handle large quantities of treated timber. Such facilities, with constantly improving technology, are being commissioned in Europe (often with Government subsidies) and this indicates that similar bio-energy (co)generation will be established in NZ in the future. However, at present, the NZ Government provides little assistance to the bio-energy industry and the emergence worldwide of shale-gas reserves is likely to push the economic viability of bio-energy further into the future. The behaviour of timber materials placed in landfills is complex and poorly understood. Degrading timber in landfills has the potential to generate methane, a potent greenhouse gas, which can escape to the atmosphere and cancel out the significant benefits of carbon sequestration during tree growth. Improving security of landfills and more effective and efficient collection and utilisation of methane from landfills in NZ will significantly reduce the potential for leakage of methane to the atmosphere, acting as an offset to the continuing use of underground fossil fuels. Life cycle assessment (LCA), an increasingly important methodology for quantifying the environmental impacts of building materials (particularly energy, and global warming potential (GWP)), will soon be incorporated into the NZ Green Building Council Greenstar rating tools. Such LCA studies must provide a level playing field for all building materials and consider the whole life cycle. Whilst the end-of-life treatment of timber by LCA may establish a present-day base scenario, any analysis must also present a realistic end-of-life scenario for the future deconstruction of any 6 new building, as any building built today will be deconstructed many years in the future, when very different technologies will be available to deal with construction waste. At present, LCA practitioners in NZ and Australia place much value on a single research document on the degradation of timber in landfills (Ximenes et al., 2008). This leads to an end-of-life base scenario for timber which many in the industry consider to be an overestimation of the potential negative effects of methane generation. In Europe, the base scenario for wood disposal is cascading timber products and then burning for energy recovery, which normally significantly reduces any negative effects of the end-of-life for timber. LCA studies in NZ should always provide a sensitivity analysis for the end-of-life of timber and strongly and confidently argue that alternative future scenarios are realistic disposal options for buildings deconstructed in the future. Data-sets for environmental impacts (such as GWP) of building materials in NZ are limited and based on few research studies. The compilation of comprehensive data-sets with country-specific information for all building materials is considered a priority, preferably accounting for end-of-life options. The NZ timber industry should continue to ‘champion’ the environmental credentials of timber, over and above those of the other major building materials (concrete and steel). End-of-life should not be considered the ‘Achilles heel’ of the timber story.
Following the recent earthquakes in Chile (2010) and New Zealand (2010/2011), peculiar failure modes were observed in Reinforced Concrete (RC) walls. These observations have raised a global concern on the contribution of bi-directional loading to these failure mechanisms. One of the failure modes that could potentially result from bidirectional excitations is out-of-plane shear failure. In this paper an overview of the recent experimental and numerical findings regarding out-of-plane shear failure in RC walls are presented. The numerical study presents the Finite Element (FE) simulation of wall D5-6 from the Grand Chancellor Hotel that failed in shear in the out-of-plane direction in the February 2011 Christchurch earthquake. The main objective of the numerical study was to investigate the reasons for this failure mode. The experimental campaign includes the recent experiments conducted in the Structural Engineering Laboratory of the University of Canterbury. The experimental study included three rectangular slender RC walls designed based on NZS3101: 2006-A3 (2017) for three different ductility levels, namely: nominally ductile, limited ductile and ductile. The numerical results showed that high axial load combined with bi-directional loading caused the out-of-plane shear failure in wall D5-6 from the Grand Chancellor Hotel. This was also confirmed and further investigated in the experimental phase of the study.
Improving community resilience requires a way of thinking about the nature of a community. Two complementary aspects are proposed: the flows connecting the community with its surrounding environment and the resources the community needs for its ongoing life. The body of necessary resources is complex, with many interactions between its elements. A systems approach is required to understand the issues adequately. Community resilience is discussed in general terms together with strategies for improving it. The ideas are then illustrated and amplified by an extended case study addressing means of improving the resilience of a community on the West Coast of New Zealand to natural disasters. The case study is in two phases. The first relies on a mix of on-the-ground observations and constructed scenarios to provide recommendations for enhancing community resilience, while the second complements the first by developing a set of general lessons and issues to be addressed from observations of the Christchurch earthquakes of 2010 and 2011.
The devastating magnitude M6.3 earthquake, that struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011, caused widespread damage to the lifeline systems. Following the event, the Natural Hazard Research Platform (NHRP) of New Zealand funded a short-term project “Recovery of Lifelines” aiming to: 1) coordinate the provision of information to meet lifeline short-term needs; and to 2) facilitate the accessibility to lifelines of best practice engineering details, along with hazards and vulnerability information already available from the local and international scientific community. This paper aims to briefly summarise the management of the recovery process for the most affected lifelines systems, including the electric system, the road, gas, and the water and wastewater networks. Further than this, the paper intends to discuss successes and issues encountered by the “Recovery of Lifelines” NHRP project in supporting lifelines utilities.
The extent of liquefaction in the eastern suburbs of Christchurch (Aranui, Bexley, Avonside, Avonhead and Dallington) from the February 22 2011 Earthquake resulted in extensive damage to in-ground waste water pipe systems. This caused a huge demand for portable toilets (or port-a-loos) and companies were importing them from outside Canterbury and in some instances from Australia. However, because they were deemed “assets of importance” under legislation, their allocation had to be coordinated by Civil Defence and Emergency Management (CDEM). Consequently, companies supplying them had to ignore requests from residents, businesses and rest homes; and commitments to large events outside of the city such as the Hamilton 400 V8 Supercars and the Pasifika Festival in Auckland were impacted. Frustrations started to show as neighbourhoods questioned the equity of the port-a-loos distribution. The Prime Minister was reported as reassuring citizens in the eastern suburbs in the first week of March that1 “a report about the distribution of port-a-loos and chemical toilets shows allocation has been fair. Key said he has asked Civil Defence about the distribution process and where the toilets been sent. He said there aren’t enough for the scale of the event but that is quickly being rectified and the need for toilets is being reassessed all the time.” Nonetheless, there still remained a deep sense of frustration and exclusion over the equity of the port-a-loos distribution. This study took the simple approach of mapping where those port-a-loos were on 11-12 March for several areas in the eastern suburbs and this suggested that their distribution was not equitable and was not well done. It reviews the predictive tools available for estimating damage to waste water pipes and asks the question could this situation have been better planned so that pot-a-loo locations could have been better prioritised? And finally it reviews the integral roles of communication and monitoring as part of disaster management strategy. The impression from this study is that other New Zealand urban centres could or would also be at risk and that work is need to developed more rational management approaches for disaster planning.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand, earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e., anchorages having plates on the exterior facade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation, and the use of metal mesh sleeves. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5° to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a summary of the performed experimental program and test results, and a proposed pull-out capacity relationship for adhesive anchors installed into multi-leaf clay brick masonry are presented herein. AM - Accepted Manuscript
Fire following earthquakes have caused the largest single loss due to earthquakes and in most cases have caused more damage than the quake itself. This problem is regarded very seriously in Japan and in some parts of the United States of America (San Francisco), but is not very seriously considered in other earthquake prone countries, yet the potential for future conflagrations following earthquakes is enormous. Any discussion of post earthquake fire must take into account structural and non-structural damages, initial and spreading fire, wind, water availability, and emergency responses. In this paper we will look at initial fire ignitions, growth and spread and life and property damage. Prevention methods will also be discussed. We will also discuss as examples some case studies: - San Francisco 1989 - Napier 1931 -Christchurch (scenario)
In practice, several competing liquefaction evaluation procedures (LEPs) are used to compute factors of safety against soil liquefaction, often for use within a liquefaction potential index (LPI) framework to assess liquefaction hazard. At present, the influence of the selected LEP on the accuracy of LPI hazard assessment is unknown, and the need for LEP-specific calibrations of the LPI hazard scale has never been thoroughly investigated. Therefore, the aim of this study is to assess the efficacy of three CPT-based LEPs from the literature, operating within the LPI framework, for predicting the severity of liquefaction manifestation. Utilising more than 7000 liquefaction case studies from the 2010–2011 Canterbury (NZ) earthquake sequence, this study found that: (a) the relationship between liquefaction manifestation severity and computed LPI values is LEP-specific; (b) using a calibrated, LEP-specific hazard scale, the performance of the LPI models is essentially equivalent; and (c) the existing LPI framework has inherent limitations, resulting in inconsistent severity predictions against field observations for certain soil profiles, regardless of which LEP is used. It is unlikely that revisions of the LEPs will completely resolve these erroneous assessments. Rather, a revised index which more adequately accounts for the mechanics of liquefaction manifestation is needed.
The September 2010 Canterbury and February 2011 Christchurch earthquakes and associated aftershocks have shown that the isolator displacement in Christchurch Women's Hospital (Christchurch City's only base-isolated structure) was significantly less than expected. Occupant accounts of the events have also indicated that the accelerations within the hospital superstructure were larger than would usually be expected within a base-isolated structure and that residual low-level shaking lasts for a longer period of time following the strong-motion of an event than for non-isolated structures.
Probabilistic Structural Fire Engineering (PSFE) has been introduced to overcome the limitations of current conventional approaches used for the design of fire-exposed structures. Current structural fire design investigates worst-case fire scenarios and include multiple thermal and structural analyses. PSFE permits buildings to be designed to a level of life safety or economic loss that may occur in future fire events with the help of a probabilistic approach. This thesis presents modifications to the adoption of a Performance-Based Earthquake Engineering (PBEE) framework in Probabilistic Structural Fire Engineering (PSFE). The probabilistic approach runs through a series of interrelationships between different variables, and successive convolution integrals of these interrelationships result in probabilities of different measures. The process starts with the definition of a fire severity measure (FSM), which best relates fire hazard intensity with structural response. It is identified by satisfying efficiency and sufficiency criteria as described by the PBEE framework. The relationship between a fire hazard and corresponding structural response is established by analysis methods. One method that has been used to quantify this relationship in PSFE is Incremental Fire Analysis (IFA). The existing IFA approach produces unrealistic fire scenarios, as fire profiles may be scaled to wide ranges of fire severity levels, which may not physically represent any real fires. Two new techniques are introduced in this thesis to limit extensive scaling. In order to obtain an annual rate of exceedance of fire hazard and structural response for an office building, an occurrence model and an attenuation model for office fires are generated for both Christchurch city and New Zealand. The results show that Christchurch city is 15% less likely to experience fires that have the potential to cause structural failures in comparison to all of New Zealand. In establishing better predictive relationships between fires and structural response, cumulative incident radiation (a fire hazard property) is found to be the most appropriate fire severity measure. This research brings together existing research on various sources of uncertainty in probabilistic structural fire engineering, such as elements affecting post-flashover fire development factors (fuel load, ventilation, surface lining and compartment geometry), fire models, analysis methods and structural reliability. Epistemic uncertainty and aleatory uncertainty are investigated in the thesis by examining the uncertainty associated with modelling and the factors that influence post-flashover development of fires. A survey of 12 buildings in Christchurch in combination with recent surveys in New Zealand produced new statistical data on post-flashover development factors in office buildings in New Zealand. The effects of these parameters on temperature-time profiles are evaluated. The effects of epistemic uncertainty due to fire models in the estimation of structural response is also calculated. Parametric fires are found to have large uncertainty in the prediction of post-flashover fires, while the BFD curves have large uncertainties in prediction of structural response. These uncertainties need to be incorporated into failure probability calculations. Uncertainty in structural modelling shows that the choices that are made during modelling have a large influence on realistic predictions of structural response.
A linear and non-linear model are developed to analyze the structural impact and response of two single degree of freedom structures, representing adjacent buildings or bridge sections. Different impact coefficients of restitution, normalized distances between structures and a range of different structural periods are considered. The probability of impact and the displacement changes that can result from these collisions are computed. The likelihood of an increase in displacement is quantified in a probabilistic sense. A full matrix of response simulations are performed to individually investigate and delineate the effects of inter-structure gap-ratio, period ratios, structural non-linearity and impact elasticity. Column inelasticity is incorporated through the use of a Ramberg-Osgood type hysteresis rule. The minimum normalized distance, or gap-ratio, required between two structures to ensure that the likelihood of increased displacement of more than 10% for either structure for 90% of the given earthquake ground motions is assessed as one of many possible design risk bounds. Increased gap ratio, defined as a percentage of spectral displacement, is shown to reduce the likelihood of impact, as well as close structural periods. Larger differences in the relative periods of the two structures were seen to significantly increase the likelihood of impact. Inclusion of column inelasticity and higher plasticity of impact reduce displacement increases from impact and thus possible further damage to the structures. Such information can be used as a guideline to manage undesirable effects of impact in design - a factor that has been observed to be very important during the recent Canterbury, New Zealand Earthquakes.
Following a damaging earthquake, the immediate emergency response is focused on individual collapsed buildings or other "hotspots" rather than the overall state of damage. This lack of attention to the global damage condition of the affected region can lead to the reporting of misinformation and generate confusion, causing difficulties when attempting to determine the level of postdisaster resources required. A pre-planned building damage survey based on the transect method is recommended as a simple tool to generate an estimate of the overall level of building damage in a city or region. A methodology for such a transect survey is suggested, and an example of a similar survey conducted in Christchurch, New Zealand, following the 22 February 2011 earthquake is presented. The transect was found to give suitably accurate estimates of building damage at a time when information was keenly sought by government authorities and the general public. VoR - Version of Record
The focus of the study presented herein is an assessment of the relative efficacy of recent Cone Penetration Test (CPT) and small strain shear wave velocity (Vs) based variants of the simplified procedure. Towards this end Receiver Operating Characteristic (ROC) analyses were performed on the CPT- and Vs-based procedures using the field case history databases from which the respective procedures were developed. The ROC analyses show that Factors of Safety (FS) against liquefaction computed using the most recent Vs-based simplified procedure is better able to separate the “liquefaction” from the “no liquefaction” case histories in the Vs liquefaction database than the CPT-based procedure is able to separate the “liquefaction” from the “no liquefaction” case histories in the CPT liquefaction database. However, this finding somewhat contradicts the assessed predictive capabilities of the CPT- and Vs-based procedures as quantified using select, high quality liquefaction case histories from the 20102011 Canterbury, New Zealand, Earthquake Sequence (CES), wherein the CPT-based procedure was found to yield more accurate predictions. The dichotomy of these findings may result from the fact that different liquefaction field case history databases were used in the respective ROC analyses for Vs and CPT, while the same case histories were used to evaluate both the CPT- and Vs-based procedures.
Timber-based hybrid structures provide a prospective solution for utilizing environmentally friendly timber material in the construction of mid-rise or high-rise structures. This study mainly focuses on structural damage evaluation for a type of timber-steel hybrid structures, which incorporate prefabricated light wood frame shear walls into steel moment-resisting frames (SMRFs). The structural damage of such a hybrid structure was evaluated through shake table tests on a four-story large-scale timber-steel hybrid structure. Four ground motion records (i.e., Wenchuan earthquake, Canterbury earthquake, El-Centro earthquake, and Kobe earthquake) were chosen for the tests, with the consideration of three different probability levels (i.e., minor, moderate and major earthquakes) for each record. During the shake table tests, the hybrid structure performed quite well with visual damage only to wood shear walls. No visual damage in SMRF and the frame-to-wall connections was observed. The correlation of visual damage to seismic intensity, modal-based damage index and inter-story drift was discussed. The reported work provided a basis of knowledge for performance-based seismic design (PBSD) for such timber-based hybrid structures.
Base isolation is arguably the most reliable method for providing enhanced protection of buildings against earthquake-induced actions, by virtue of a physical separation between the structure and the ground through elements/devices with controlled force capacity, significant lateral deformation capacity and (often) enhanced energy dissipation. Such a design solution has shown its effectiveness in protecting both structural and non-structural components, hence preserving their functionality even in the aftermath of a major seismic event. Despite lead rubber bearings being invented in New Zealand almost forty years ago, the Christchurch Women's hospital was the only isolated building in Christchurch when the Canterbury earthquake sequence struck in 2010/11. Furthermore, a reference code for designing base-isolated buildings in New Zealand is still missing. The absence of a design standard or at least of a consensus on design guidelines is a potential source for a lack of uniformity in terms of performance criteria and compliance design approaches. It may also limit more widespread use of the technology in New Zealand. The present paper provides an overview of the major international codes (American, Japanese and European) for the design of base-isolated buildings. The design performance requirements, the analysis procedures, the design review process and approval/quality control of devices outlined in each code are discussed and their respective pros and cons are compared through a design application on a benchmark building in New Zealand. The results gathered from this comparison are intended to set the basis for the development of guidelines specific for the New Zealand environment.
The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.
Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building non-skeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.