Search

found 90 results

Research papers, University of Canterbury Library

As part of the Canterbury Earthquake Digital Archive, this thesis documents the effects of the earthquakes on the musical life of Christchurch. It concentrates, primarily, on the classical music scene. The thesis examines the difficulties experienced by musical organisations, individual musicians, and teachers as they sought to bring music to the broken city, together with the measures that were necessary in order to overcome those difficulties. It examines how those organisations have worked to re-establish themselves in their particular musical fields. It charts the progress made, to date, along the path to recovery and offers suggestions regarding precautionary measures which, if instituted, could reduce the after-effects of a future disaster. Recognising that not all of the difficulties encountered were directly related to the earthquakes, this thesis also examines the effects on music and musicians, of decision making associated with the recovery effort. The thesis also demonstrates how a destructive event can provide the inspiration for creativity. It recognises the importance of music in maintaining a sense of normality for people, whether they realise it or not, as well as its influences in providing emotional relief in times of stress. Hopefully, it may become a useful guide to which other cities that may be faced with some natural disaster, could refer.

Research papers, University of Canterbury Library

In recent years, significant research has been undertaken into the development of lead-extrusion damping technology. The high force-to-volume (HF2V) devices developed at the University of Canterbury have been the subject of much of this research. However, while these devices have undergone a limited range of velocity testing, limitations in test equipment has meant that they have never been tested at representative earthquake velocities. Such testing is important as the peak resistive force provided by the dampers under large velocity spikes is an important design input that must be known for structural applications. This manuscript presents the high-speed testing of HF2V devices with quasi-static force capacities of 250-300kN. These devices have been subjected to peak input velocities of approximately 200mm/s, producing peak resistive forces of approximately 350kN. The devices show stable hysteretic performance, with slight force reduction during high-speed testing due to heat build-up and softening of the lead working material. This force reduction is recovered following cyclic loading as heat is dissipated and the lead hardens again. The devices are shown to be only weakly velocity dependent, an advantage in that they do not deliver large forces to the connecting elements and surrounding structure if larger than expected response velocities occur. This high-speed testing is an important step towards uptake as it provides important information to designers.

Research papers, University of Canterbury Library

This report presents an overview of the soil profile characteristics at a number of strong motion station (SMS) sites in Christchurch and its surrounds. An extensive database of ground motion records has been captured by the SMS network in the Canterbury region during the Canterbury earthquake sequence. However in order to comprehensively understand the ground motions recorded at these sites and to be able to relate these motions to other locations, a detailed understanding of the shallow geotechnical profile at each SMS is required. The original NZS1170.5 (SNZ 2004) site subsoil classifications for each SMS site is based on regional geological information and well logs located at varying distances from the site. Given the variability of Christchurch soils, more detailed investigations are required in close vicinity to each SMS to better understand stratigraphy and soil properties, which are important in seismic site response. In this regard, CPT, SPT and borehole data, shear wave velocity (Vs) profiles, and horizontal to vertical spectral ratio measurements (H/V) in close vicinity to the SMS were used to develop representative soil profiles at each site. NZS1170.5 (SNZ 2004) site subsoil classifications were updated using Vs and SPT N60 criteria. Site class E boundaries were treated as a sliding scale rather than as a discrete boundary to account for locations with similar site effects potential, an approach which was shown to result in a better delineation between the site classes. SPT N60 values often indicate a stiffer site class than the Vs data for softer soil sites, highlighting the disparity between the two site investigation techniques. Both SPT N60 and Vs based site classes did not always agree with the original site classifications. This emphasises the importance of having detailed site‐specific information at SMS locations in order to properly classify them. Furthermore, additional studies are required to harmonize site classification based on SPT N60 and Vs. Liquefaction triggering assessments were carried out for the Darfield and Christchurch earthquakes, and compared against observed liquefaction surface manifestations and ground motions characteristics at each SMS. In general, the characteristics of the recorded ground motions at each site correlate well with the triggering analyses. However, at sites that likely liquefied at depth (as indicated by triggering analyses and/or inferred from the characteristics of the recorded surface acceleration time series), the presence of a non‐liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects.

Research papers, University of Canterbury Library

Christchurch and Canterbury suffered significant housing losses due to the earthquakes. Estimates from the Earthquake Commission (EQC) (2011) suggest that over 150,000 homes (around three quarters of Christchurch housing stock) sustained damage from the earthquakes. Some areas of Christchurch have been declared not suitable for rebuilding, affecting more than 7,500 residential properties.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading in Christchurch and surrounding suburbs during the recent Canterbury Earthquake Sequence (2010-2011) caused significant damage to structures and lifelines located in close proximity to streams and rivers. Simplified methods used in current engineering practice for predicting lateral ground displacements exhibit a high degree of epistemic uncertainty, but provide ‘order of magnitude’ estimates to appraise the hazard. We wish to compare model predictions to field measurements in order to assess the model’s capabilities and limitations with respect to Christchurch conditions. The analysis presented focuses on the widely-used empirical model of Youd et al. (2002), developed based on multi-linear regression (MLR) of case history data from lateral spreading occurrence in Japan and the US. Two issues arising from the application of this model to Christchurch were considered: • Small data set of Standard Penetration Test (SPT) and soil gradation indices (fines content FC, and mean grain size, D50) required for input. We attempt to use widely available CPT data with site specific correlations to FC and D50. • Uncertainty associated with the model input parameters and their influence on predicted displacements. This has been investigated for a specific location through a sensitivity analysis.

Research papers, University of Canterbury Library

The Canterbury earthquakes caused huge amounts of damage to Christchurch and the surrounding area and presented a very challenging situation for both insurers and claimants. While tourism has suffered significant losses as a result, particularly due to the subsequent decrease in visitor numbers, the Canterbury region was very fortunate to have high levels of insurance coverage. This report, based on data gathered from tourism operators on the ground in Canterbury, looks at how this sector has been affected by the quakes, claims patterns, and the behaviour and perceptions of tourism operators about insurance.

Research papers, University of Canterbury Library

This poster provides a comparison between the strong ground motions observed in the 22 February 2011 Mw6.3 Christchurch earthquake with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. The destuction resulting from both of these events has been well documented, although tsunami was the principal cause of damage in the latter event, and less attention has been devoted to the impact of earthquake-induced ground motions. Despite Tokyo being located over 100km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were significant enough to cause structural damage and also significant liquefaction to loose reclaimed soils in Tokyo Bay. The author was fortunate enough (from the perspective of an earthquake engineer) to experience first-hand both of these events. Following the Tohoku event, the athor conducted various ground motion analyses and reconniassance of the Urayasu region in Tokyo Bay affected by liquefaction in collaboration with Prof. Kenji Ishihara. This conference is therefore a fitting opportunity in which to discuss some of authors insights obtained as a result of this first hand knowledge. Figure 1 illustrates the ground motions recorded in the Christchurch CBD in the 22 February 2011 and 4 September 2010 earthquakes, with that recorded in Tokyo Bay in the 11 March 2011 Tohoku earthquake. It is evident that these three ground motions vary widely in their amplitude and duration. The CBGS ground motion from the 22 February 2011 event has a very large amplitude (nearly 0.6g) and short duration (approx. 10s of intense shaking), as a result of the causal Mw6.3 rupture at short distance (Rrup=4km). The CBGS ground motion from the 4 September 2010 earthquake has a longer duration (approx. 30s of intense shaking), but reduced acceleration amplitude, as a result of the causal Mw7.1 rupture at a short-to-moderate distance (Rrup=14km). Finally, the Urayasu ground motion in Tokyo bay during the 11 March 2011 Tohoku earthquake exhibits an acceleration amplitude similar to the 4 September 2010 CBGS ground motion, but a significantly larger duration (approx 150s of intense shaking). Clearly, these three different ground motions will affect structures and soils in different ways depending on the vibration characteristics of the structures/soil, and the potential for strength and stiffness degradation due to cumulative effects. Figure 2 provides a comparison between the arias intensities of the several ground motion records from the three different events. It can be seen that the arias intensities of the ground motions in the Christchurch CBD from the 22 February 2011 earthquake (which is on average AI=2.5m/s) is approximately twice that from the 4 September 2010 earthquake (average AI≈1.25). This is consistent with a factor of approximately 1.6 obtained by Cubrinovski et al. (2011) using the stress-based (i.e.PGA-MSF) approach of liquefaction triggering. It can also be seen that the arias intensity of the ground motions recorded in Tokyo during the 2011 Tohoku earthquake are larger than ground motions in the Christchurch CBD from the 4 September 2011 earthquake, but smaller than those of the 22 February 2011 earthquake. Based on the arias intensity liquefaction triggering approach it can therefore be concluded that the ground motion severity, in terms of liquefaction potential, for the Tokyo ground motions is between those ground motions in Christchurch CBD from the 4 September 2010 and 22 February 2011 events.

Research papers, University of Canterbury Library

Deconstruction, at the end of the useful life of a building, produces a considerable amount of materials which must be disposed of, or be recycled / reused. At present, in New Zealand, most timber construction and demolition (C&D) material, particularly treated timber, is simply waste and is placed in landfills. For both technical and economic reasons (and despite the increasing cost of landfills), this position is unlikely to change in the next 10 – 15 years unless legislation dictates otherwise. Careful deconstruction, as opposed to demolition, can provide some timber materials which can be immediately re-used (eg. doors and windows), or further processed into other components (eg. beams or walls) or recycled (‘cascaded’) into other timber or composite products (e.g. fibre-board). This reusing / recycling of materials is being driven slowly in NZ by legislation, the ‘greening’ of the construction industry and public pressure. However, the recovery of useful material can be expensive and uneconomic (as opposed to land-filling). In NZ, there are few facilities which are able to sort and separate timber materials from other waste, although the soon-to-be commissioned Burwood Resource Recovery Park in Christchurch will attempt to deal with significant quantities of demolition waste from the recent earthquakes. The success (or otherwise) of this operation should provide good information as to how future C&D waste will be managed in NZ. In NZ, there are only a few, small scale facilities which are able to burn waste wood for energy recovery (e.g. timber mills), and none are known to be able to handle large quantities of treated timber. Such facilities, with constantly improving technology, are being commissioned in Europe (often with Government subsidies) and this indicates that similar bio-energy (co)generation will be established in NZ in the future. However, at present, the NZ Government provides little assistance to the bio-energy industry and the emergence worldwide of shale-gas reserves is likely to push the economic viability of bio-energy further into the future. The behaviour of timber materials placed in landfills is complex and poorly understood. Degrading timber in landfills has the potential to generate methane, a potent greenhouse gas, which can escape to the atmosphere and cancel out the significant benefits of carbon sequestration during tree growth. Improving security of landfills and more effective and efficient collection and utilisation of methane from landfills in NZ will significantly reduce the potential for leakage of methane to the atmosphere, acting as an offset to the continuing use of underground fossil fuels. Life cycle assessment (LCA), an increasingly important methodology for quantifying the environmental impacts of building materials (particularly energy, and global warming potential (GWP)), will soon be incorporated into the NZ Green Building Council Greenstar rating tools. Such LCA studies must provide a level playing field for all building materials and consider the whole life cycle. Whilst the end-of-life treatment of timber by LCA may establish a present-day base scenario, any analysis must also present a realistic end-of-life scenario for the future deconstruction of any 6 new building, as any building built today will be deconstructed many years in the future, when very different technologies will be available to deal with construction waste. At present, LCA practitioners in NZ and Australia place much value on a single research document on the degradation of timber in landfills (Ximenes et al., 2008). This leads to an end-of-life base scenario for timber which many in the industry consider to be an overestimation of the potential negative effects of methane generation. In Europe, the base scenario for wood disposal is cascading timber products and then burning for energy recovery, which normally significantly reduces any negative effects of the end-of-life for timber. LCA studies in NZ should always provide a sensitivity analysis for the end-of-life of timber and strongly and confidently argue that alternative future scenarios are realistic disposal options for buildings deconstructed in the future. Data-sets for environmental impacts (such as GWP) of building materials in NZ are limited and based on few research studies. The compilation of comprehensive data-sets with country-specific information for all building materials is considered a priority, preferably accounting for end-of-life options. The NZ timber industry should continue to ‘champion’ the environmental credentials of timber, over and above those of the other major building materials (concrete and steel). End-of-life should not be considered the ‘Achilles heel’ of the timber story.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are

Research papers, University of Canterbury Library

This report examines and compares case studies of labour market policy responses in APEC economies to natural disasters. It first reviews the policies and practice within APEC economies and internationally in managing the labour market effects of natural disasters. By using comparative case studies, the report then compares recent disaster events in the Asia-Pacific region, including: - the June 2013 Southern Alberta floods in Canada; - the 2010 and 2011 Queensland floods in Australia; - the 2010 and 2011 Canterbury earthquakes in New Zealand; - the 2011 Great East Japan Earthquake and Tsunami in Japan; and - the 2008 Wenchuan earthquake in China.

Research papers, University of Canterbury Library

Insurance is widely acknowledged as a key component in an organisation's disaster preparedness and resilience. But how effective is insurance in aiding business recovery following a major disaster? The aim of this research was to summarise the experiences of both the insurance industry and businesses dealing with commercial insurance claims following the 2010 and 2011 Canterbury earthquakes.

Research papers, University of Canterbury Library

The Canterbury earthquakes have generated economic demand and supply volatility, highlighting geographical and structural interdependencies. Post-earthquake reconstruction and new developments have seen skills training, relocation, recruitment and importation of skills becoming crucial for construction companies to meet demand and compete effectively. This report presents 15 case studies from a range of organisations involved in the Canterbury rebuild, exploring the business dynamics and outcomes of their resourcing initiatives. A key finding of this research is that, for many construction organisations, resourcing initiatives have become part of their organisational longer-term development strategies, rather than simply a response to ‘supply and demand’ pressures. Organisations are not relying on any single resourcing solution to drive their growth but use a combination of initiatives to create lasting business benefits, such as cost savings, improved brand and reputation, a stable and productive workforce, enhanced efficiency and staff morale, as well as improved skill levels.

Research papers, University of Canterbury Library

Based on a qualitative study of four organisations involving 47 respondents following the extensive 2010 – 2011 earthquakes in Christchurch, New Zealand, this paper presents some guidance for human resource practitioners dealing with post-disaster recovery. A key issue is the need for the human resource function to reframe its practices in a post-disaster context, developing a specific focus on understanding and addressing changing employee needs, and monitoring the leadership behaviour of supervisors. This article highlights the importance of flexible organisational responses based around a set of key principles concerning communication and employee perceptions of company support.

Research papers, University of Canterbury Library

Disasters are rare events with major consequences; yet comparatively little is known about managing employee needs in disaster situations. Based on case studies of four organisations following the devastating earthquakes of 2010 - 2011 in Christchurch, New Zealand, this paper presents a framework using redefined notions of employee needs and expectations, and charting the ways in which these influence organisational recovery and performance. Analysis of in-depth interview data from 47 respondents in four organisations highlighted the evolving nature of employee needs and the crucial role of middle management leadership in mitigating the effects of disasters. The findings have counterintuitive implications for human resource functions in a disaster, suggesting that organisational justice forms a central framework for managing organisational responses to support and engage employees for promoting business recovery.

Research papers, University of Canterbury Library

The magnitude 6.2 Christchurch earthquake struck the city of Christchurch at 12:51pm on February 22, 2011. The earthquake caused 186 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to lifeline networks and health care facilities. Critical facilities, such as public and private hospitals, government, non-government and private emergency services, physicians’ offices, clinics and others were severely impacted by this seismic event. Despite these challenges many systems were able to adapt and cope. This thesis presents the physical and functional impact of the Christchurch earthquake on the regional public healthcare system by analysing how it adapted to respond to the emergency and continued to provide health services. Firstly, it assesses the seismic performance of the facilities, mechanical and medical equipment, building contents, internal services and back-up resources. Secondly, it investigates the reduction of functionality for clinical and non-clinical services, induced by the structural and non-structural damage. Thirdly it assesses the impact on single facilities and the redundancy of the health system as a whole following damage to the road, power, water, and wastewater networks. Finally, it assesses the healthcare network's ability to operate under reduced and surged conditions. The effectiveness of a variety of seismic vulnerability preparedness and reduction methods are critically reviewed by comparing the observed performances with the predicted outcomes of the seismic vulnerability and disaster preparedness models. Original methodology is proposed in the thesis which was generated by adapting and building on existing methods. The methodology can be used to predict the geographical distribution of functional loss, the residual capacity and the patient transfer travel time for hospital networks following earthquakes. The methodology is used to define the factors which contributed to the overall resilence of the Canterbury hospital network and the areas which decreased the resilence. The results show that the factors which contributed to the resilence, as well as the factors which caused damage and functionality loss were difficult to foresee and plan for. The non-structural damage to utilities and suspended ceilings was far more disruptive to the provision of healthcare than the minor structural damage to buildings. The physical damage to the healthcare network reduced the capacity, which has further strained a health care system already under pressure. Providing the already high rate of occupancy prior to the Christchurch earthquake the Canterbury healthcare network has still provided adequate healthcare to the community.

Research papers, University of Canterbury Library

Cultural heritage is a dynamic concept, incorporating the ideas and values of many different organisations and individuals; it is heavily dependent on the context of the item or site being conserved, and transforms something from an old article into a historically significant object. A formal definition of cultural heritage did not appear in the Antarctic Treaty System until 1995, however Antarctic heritage value has been applied to various sites and monuments since the inception of the Treaty, from Shackleton’s Nimrod Hut to a heavy tractor. This report examines a number of case studies to determine the various ways in which heritage items and sites can be managed – such as the removal of the South Pole Dome – as well as their conservation after natural disasters, for instance the Christchurch earthquakes.

Research papers, University of Canterbury Library

The University of Canterbury is known internationally for the Origins of New Zealand English (ONZE) corpus (see Gordon et al 2004). ONZE is a large collection of recordings from people born between 1851 and 1984, and it has been widely utilised for linguistic and sociolinguistic research on New Zealand English. The ONZE data is varied. The recordings from the Mobile Unit (MU) are interviews and were collected by members of the NZ Broadcasting service shortly after the Second World War, with the aim of recording stories from New Zealanders outside the main city centres. These were supplemented by interview recordings carried out mainly in the 1990s and now contained in the Intermediate Archive (IA). The final ONZE collection, the Canterbury Corpus, is a set of interviews and word-list recordings carried out by students at the University of Canterbury. Across the ONZE corpora, there are different interviewers, different interview styles and a myriad of different topics discussed. In this paper, we introduce a new corpus – the QuakeBox – where these contexts are much more consistent and comparable across speakers. The QuakeBox is a corpus which consists largely of audio and video recordings of monologues about the 2010-2011 Canterbury earthquakes. As such, it represents Canterbury speakers’ very recent ‘danger of death’ experiences (see Labov 2013). In this paper, we outline the creation and structure of the corpus, including the practical issues involved in storing the data and gaining speakers’ informed consent for their audio and video data to be included.

Research papers, University of Canterbury Library

The Canterbury earthquakes, which started with the 7.1 magnitude event on September 4, 2010, caused significant damage in the region. The September 4 earthquakes brought substantial damage to land, buildings, and infrastructure, while the 6.3 magnitude earthquake on February 22, 2011 (and its subsequent aftershocks), brought even greater property damage, but also significant loss of life in addition to the region. Thousands were injured, and 185 persons died. A national State of Emergency was declared and remained in effect until April 30, 2011. A significant number of people required immediate assistance and support to deal with loss, injury, trauma experiences, and property damages. Many had to find alternate accommodation as their houses were too damaged to stay in. Of those affected, many were already vulnerable, and others had been too traumatized by the events to effectively deal with the challenges they were faced with. A number of human service organizations in the region, from both government and non-government sectors, joined forces to be able to more effectively and efficiently help those in need. This was the start of what would become known as the Earthquake Support Coordination Service. The aim of this report is to present an evaluation of the Earthquake Support Coordination Service and its collaborative organization, based on documentation and interviews with key stakeholders of the service. The aim is also to evaluate the service based on perspectives gathered among the clients as well as the coordinators working in the service. The final aim is to offer a reflection on the service model, and on what factors enabled the service, as well as recommendations regarding aspects of the service which may require review, and aspects which may be useful in other contexts.

Research papers, The University of Auckland Library

New Zealand's devastating Canterbury earthquakes provided an opportunity to examine the efficacy of existing regulations and policies relevant to seismic strengthening of vulnerable buildings. The mixed-methods approach adopted, comprising both qualitative and quantitative approaches, revealed that some of the provisions in these regulations pose as constraints to appropriate strengthening of earthquake-prone buildings. Those provisions include the current seismic design philosophy, lack of mandatory disclosure of seismic risks and ineffective timeframes for strengthening vulnerable buildings. Recommendations arising from these research findings and implications for pre-disaster mitigation for future earthquake and Canterbury's post-disaster reconstruction suggest: (1) a reappraisal of the requirements for earthquake engineering design and construction, (2) a review and realignment of all regulatory frameworks relevant to earthquake risk mitigation, and (3) the need to develop a national programme necessary to achieve consistent mitigation efforts across the country. These recommendations are important in order to present a robust framework where New Zealand communities such as Christchurch can gradually recover after a major earthquake disaster, while planning for pre-disaster mitigation against future earthquakes. AM - Accepted Manuscript

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragms. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein.

Research papers, The University of Auckland Library

As a result of the 4 September 2010 Darfield earthquake and the more damaging 22 February 2011 Christchurch earthquake, considerable damage occurred to a significant number of buildings in Christchurch. The damage that occurred to the Christchurch Roman Catholic Cathedral of the Blessed Sacrament (commonly known as the Christchurch Basilica) as a result of the Canterbury earthquakes is reported, and the observed failure modes are identified. A previous strengthening intervention is outlined and the estimated capacity of the building is discussed. This strengthening was completed in 2004, and addressed the worst aspects of the building's seismic vulnerability. Urgent work was undertaken post-earthquake to secure parts of the building in order to limit damage and prevent collapse of unstable parts of the building. The approach taken for this securing is outlined, and the performance of the building and the previously installed earthquake strengthening intervention is evaluated.A key consideration throughout the project was the interaction between the structural securing requirements that were driven by the requirement to limit damage and mitigate hazards, and the heritage considerations. Lessons learnt from the strengthening that was carried out, the securing work undertaken, and the approach taken in making the building "safe" are discussed. Some conclusions are drawn with respect to the effectiveness of strengthening similar building types, and the approach taken to secure the building under active seismic conditions. AM - Accepted Manuscript

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury, New Zealand earthquakes, a detailed door-to-door survey was conducted in the Christchurch region to establish the earthquake performance of lightweight timber-framed residential dwellings with a masonry veneer external cladding system. The post-earthquake survey involved documenting the condition of dwellings in areas that had experienced different levels of earthquake shaking, allowing comparison between the performance of different veneer systems and different shaking intensities. In total, just fewer than 1,100 residential dwellings were inspected throughout the wider Christchurch area. The survey included parameters such as level of veneer damage, type of veneer damage, observed crack widths, and level of repair required. It is concluded that based on observed earthquake performance at the shaking intensities matching or exceeding ultimate limit state loading, the post-1996 veneer fixing details performed satisfactorily and continued use of the detail is recommended without further modification. AM - Accepted Manuscript

Research papers, The University of Auckland Library

It is well known that buildings constructed using unreinforced masonry (URM) are susceptible to damage from earthquake induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent New Zealand example of destructive earthquakes, which have drawn people's attention to the inherent seismic weaknesses of URM buildings and anchored masonry veneer systems in New Zealand. A brief review of the data collected following the 2010 Darfield earthquake and more comprehensive documentation of data that was collected following the 2011 Christchurch earthquake is presented, along with the findings from subsequent data interrogation. Large stocks of earthquake prone vintage URM buildings that remain in New Zealand and in other seismically active parts of the world result in the need for minimally invasive and cost effective seismic retrofit techniques. The principal objective of the doctoral research reported herein was to investigate the applicability of near surface mounted (NSM) carbon fibre reinforced polymer (CFRP) strips as a seismic improvement technique. A comprehensive experimental program consisting of 53 pull tests is presented and is used to assess the accuracy of existing FRP-to-masonry bond models, with a modified model being proposed. The strength characteristics of vintage clay brick URM wall panels from two existing URM buildings was established and used as a benchmark when manufacturing replica clay brick test assemblages. The applicability of using NSM CFRP strips as a retrofitting technique for improving the shear strength and the ductility capacity of multi-leaf URM walls constructed using solid clay brick masonry is investigated by varying CFRP reinforcement ratios. Lastly, an experimental program was undertaken to validate the proposed design methodology for improving the strength capacity of URM walls. The program involved testing full-scale walls in a laboratory setting and testing full-scale walls in-situ in existing vintage URM buildings. Experimental test results illustrated that the NSM CFRP technique is an effective method to seismically strengthen URM buildings.

Research papers, The University of Auckland Library

Whole document is available to authenticated members of The University of Auckland until Feb. 2014. The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are often reluctant to adopt mitigation measures required to reduce earthquake losses. The magnitude of building collapses from the recent Christchurch earthquakes in New Zealand shows that owners of earthquake prone buildings (EPBs) are not adopting appropriate risk mitigation measures in their buildings. Owners of EPBs are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to seismic risks. This research investigates how to increase the likelihood of building owners undertaking appropriate mitigation actions that will reduce their vulnerability to earthquake disaster. A sequential two-phase mixed methods approach was adopted for the research investigation. Multiple case studies approach was adopted in the first qualitative phase, followed by the second quantitative research phase that includes the development and testing of a framework. The research findings reveal four categories of critical obstacles to building owners‘ decision to adopt earthquake loss prevention measures. These obstacles include perception, sociological, economic and institutional impediments. Intrinsic and extrinsic interventions are proposed as incentives for overcoming these barriers. The intrinsic motivators include using information communication networks such as mass media, policy entrepreneurs and community engagement in risk mitigation. Extrinsic motivators comprise the use of four groups of incentives namely; financial, regulatory, technological and property market incentives. These intrinsic and extrinsic interventions are essential for enhancing property owners‘ decisions to voluntarily adopt appropriate earthquake mitigation measures. The study concludes by providing specific recommendations that earthquake risk mitigation managers, city councils and stakeholders involved in risk mitigation in New Zealand and other seismic risk vulnerable countries could consider in earthquake risk management. Local authorities could adopt the framework developed in this study to demonstrate a combination of incentives and motivators that yield best-valued outcomes. Consequently, actions can be more specific and outcomes more effective. The implementation of these recommendations could offer greater reasons for the stakeholders and public to invest in building New Zealand‘s built environment resilience to earthquake disasters.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for the case of adhesive anchor connections than for the case of through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal foil sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes and a snapshot of the performed experimental program and the test results are presented herein. http://hdl.handle.net/2292/21050

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of several walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to NZS 3101. A database summarising of the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and an experimental setup has been developed to subject RC wall specimen to loading that is representative of a multi-storey building. Numerical modelling is being used to understand the observed performance of several case-study RC walls buildings in Christchurch. Of particular interest is the influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls.

Research papers, The University of Auckland Library

Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript