Search

found 37 results

Research papers, University of Canterbury Library

Between 2010 and 2011, Canterbury experienced a series of four large earthquake events with associated aftershocks which caused widespread damage to residential and commercial infrastructure. Fine grained and uncompacted alluvial soils, typical to the Canterbury outwash plains, were exposed to high peak ground acceleration (PGA) during these events. This rapid increase in PGA induced cyclic strain softening and liquefaction in the saturated, near surface alluvial soils. Extensive research into understanding the response of soils in Canterbury to dynamic loading has since occurred. The Earthquake Commission (EQC), the Ministry of Business and Employment (MBIE), and the Christchurch City Council (CCC) have quantified the potential hazards associated with future seismic events. Theses bodies have tested numerous ground improvement design methods, and subsequently are at the forefront of the Canterbury recovery and rebuild process. Deep Soil Mixing (DSM) has been proven as a viable ground improvement foundation method used to enhance in situ soils by increasing stiffness and positively altering in situ soil characteristics. However, current industry practice for confirming the effectiveness of the DSM method involves specific laboratory and absolute soil test methods associated with the mixed column element itself. Currently, the response of the soil around the columns to DSM installation is poorly understood. This research aims to understand and quantify the effects of DSM columns on near surface alluvial soils between the DSM columns though the implementation of standardised empirical soil test methods. These soil strength properties and ground improvement changes have been investigated using shear wave velocity (Vs), soil behaviour and density response methods. The results of the three different empirical tests indicated a consistent improvement within the ground around the DSM columns in sandier soils. By contrast, cohesive silty soils portrayed less of a consistent response to DSM, although still recorded increases. Generally, within the tests completed 50 mm from the column edge, the soil response indicated a deterioration to DSM. This is likely to be a result of the destruction of the soil fabric as the stress and strain of DSM is applied to the un‐mixed in situ soils. The results suggest that during the installation of DSM columns, a positive ground effect occurs in a similar way to other methods of ground improvement. However, further research, including additional testing following this empirical method, laboratory testing and finite 2D and 3D modelling, would be useful to quantify, in detail, how in situ soils respond and how practitioners should consider these test results in their designs. This thesis begins to evaluate how alluvial soils tend to respond to DSM. Conducting more testing on the research site, on other sites in Christchurch, and around the world, would provide a more complete data set to confirm the results of this research and enable further evaluation. Completing this additional research could help geotechnical DSM practitioners to use standardised empirical test methods to measure and confirm ground improvement rather than using existing test methods in future DSM projects. Further, demonstrating the effectiveness of empirical test methods in a DSM context is likely to enable more cost effective and efficient testing of DSM columns in future geotechnical projects.

Research papers, University of Canterbury Library

In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.

Research papers, University of Canterbury Library

This thesis presents the findings from an experimental programme to determine the performance and behaviour of an integrated building incorporating low damage structural and non-structural systems. The systems investigated included post-tensioned rocking concrete frames, articulated floor solutions, low damage claddings and low damage partition systems. As part of a more general aim to increase the resilience of society against earthquake hazards, more emphasis has been given to damage-control design approaches in research. Multiple low-damage earthquake resistant structural and non-structural systems have emerged that are able to withstand high levels of drift or deflections will little or negligible residual. Dry jointed connections, articulated floor solutions, low damage cladding systems and low damage drywall partitions have all been developed separately and successfully tested. In spite of the extensive research effort and the adoption in practice of the low damage systems, work was required to integrate the systems within one building and verify the constructibility, behaviour and performance of the integrated systems. The objectives of this research were to perform dynamic experimental testing of a building which incorporated the low damage systems and acquire data which could be used to dynamically validate numerical models for each of the systems. A three phase experimental programme was devised and performed to dynamically test a half-scale two storey reinforced concrete building on the University of Canterbury shaking table. The three phases of the programme investigated: The structural system only. The rocking connections were tested as Post-Tensioned only connections and Hybrid connections (including dissipators). Two different articulated floor connections were also investigated. Non-structural systems. The Hybrid building was tested with each non-structural system separately; including low damage claddings, low damage partitions and traditional partitions. The Complete building was tested with Hybrid connections, low damage claddings and low damage partitions all integrated within the test specimen. The building was designed based on a full scale prototype building following the direct displacement based design to reach a peak inter-storey drift of 1.6% in a 1/500 year ground motion for a Wellington site. For each test set up, the test specimen was subjected to a ground motion sequence of 39 single direction ground motions. Through the sequence, both the local and global behaviours of the building and integrated systems were recorded in real time. The test specimen was subjected to over 400 ground motions throughout the testing programme. It sustained no significant damage that required reparations other than crumbling of the grout pads. The average peak inter-storey drifts of the buildings were lower than the design value of 1.6%. The low damage non-structural elements were undamaged in the ground motion sequence. The data acquired from each of the phases was used to successfully validate numerical models for each of the low damage systems included in the research.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research papers, University of Canterbury Library

Coastal margins are exposed to rising sea levels that present challenging circumstances for natural resource management. This study investigates a rare example of tectonic displacement caused by earthquakes that generated rapid sea-level change in a tidal lagoon system typical of many worldwide. This thesis begins by evaluating the coastal squeeze effects caused by interactions between relative sea-level (RSL) rise and the built environment of Christchurch, New Zealand, and also examples of release from similar effects in areas of uplift where land reclamations were already present. Quantification of area gains and losses demonstrated the importance of natural lagoon expansion into areas of suitable elevation under conditions of RSL rise and showed that they may be necessary to offset coastal squeeze losses experienced elsewhere. Implications of these spatial effects include the need to provide accommodation space for natural ecosystems under RSL rise, yet other land-uses are likely to be present in the areas required. Consequently, the resilience of these environments depends on facilitating transitions between human land-uses either proactively or in response to disaster events. Principles illustrated by co-seismic sea-level change are generally applicable to climate change adaptation due to the similarity of inundation effects. Furthermore, they highlight the potential role of non-climatic factors in determining the overall trajectory of change. Chapter 2 quantifies impacts on riparian wetland ecosystems over an eight year period post- quake. Coastal wetlands were overwhelmed by RSL rise and recovery trajectories were surprisingly slow. Four risk factors were identified from the observed changes: 1) the encroachment of anthropogenic land-uses, 2) connectivity losses between areas of suitable elevation, 3) the disproportionate effect of larger wetland vulnerabilities, and 4) the need to protect new areas to address the future movement of ecosystems. Chapter 3 evaluates the unique context of shoreline management on a barrier sandspit under sea-level rise. A linked scenario approach was used to evaluate changes on the open coast and estuarine shorelines simultaneously and consider combined effects. The results show dune loss from a third of the study area using a sea-level rise scenario of 1 m over 100 years and with continuation of current land-uses. Increased exposure to natural hazards and accompanying demand for seawalls is a likely consequence unless natural alternatives can be progressed. In contrast, an example of managed retreat following earthquake-induced subsidence of the backshore presents a new opportunity to restart saltmarsh accretion processes seaward of coastal defences with the potential to reverse decades of degradation and build sea-level rise resilience. Considering both shorelines simultaneously highlights the existence of pinch-points from opposing forces that result in small land volumes above the tidal range. Societal adaptation is delicately poised between the paradigms of resisting or accommodating nature and challenged by the long perimeter and confined nature of the sandspit feature. The remaining chapters address the potential for salinity effects caused by tidal prism changes with a focus on the conservation of īnanga (Galaxias maculatus), a culturally important fish that supports New Zealand‘s whitebait fishery. Methodologies were developed to test the hypothesis that RSL changes would drive a shift in the distribution of spawning sites with implications for their management. Chapter 4 describes a new practical methodology for quantifying the total productivity and spatiotemporal variability of spawning sites at catchment scale. Chapter 5 describes the novel use of artificial habitats as a detection tools to help overcome field survey limitations in degraded environments where egg mortality can be high. The results showed that RSL changes resulted in major shifts in spawning locations and these were associated with new patterns of vulnerability due to the continuation of pre-disturbance land-uses. Unexpected findings includes an improved understanding of the spatial relationship between salinity and spawning habitat, and identification of an invasive plant species as important spawning habitat, both with practical management implications. To conclude, the design of legal protection mechanisms was evaluated in relation to the observed habitat shifts and with a focus on two new planning initiatives that identified relatively large protected areas (PAs) in the lower river corridors. Although the larger PAs were better able to accommodate the observed habitat shifts inefficiencies were also apparent due to spatial disparities between PA boundaries and the values requiring protection. To reduce unnecessary trade-offs with other land-uses, PAs of sufficient size to cover the observable spatiotemporal variability and coupled with adaptive capacity to address future change may offer a high effectiveness from a network of smaller PAs. The latter may be informed by both monitoring and modelling of future shifts and these are expected to include upstream habitat migration driven by the identified salinity relationships and eustatic sea-level rise. The thesis concludes with a summary of the knowledge gained from this research that can assist the development of a new paradigm of environmental sustainability incorporating conservation and climate change adaptation. Several promising directions for future research identified within this project are also discussed.

Research papers, University of Canterbury Library

Rock mass defect controlled deep-seated landslides are widespread within the deeply incised landscapes formed in Tertiary soft rock terrain in New Zealand. The basal failure surfaces of deep-seated slope failures are defined by thin, comparatively weak and laterally continuous bedding parallel layers termed critical stratigraphic horizons. These horizons have a sedimentary origin and have typically experienced some prior tectonically induced shear displacement at the time of slope failure. The key controls on the occurrence and form of deep-seated landslides are considered in terms of rock mass defect properties and tectonic and climatic forcing. The selection of two representative catchments (in southern Hawke's Bay and North Canterbury) affected by tectonic and climatic forcing has shown that the spatial and temporal initiation of deep-seated bedrock landslides in New Zealand Tertiary soft rock terrain is a predictable rather than a stochastic process; and that deep-seated landslides as a mass wasting process have a controlling role in landscape evolution in many catchments formed in Tertiary soft rock terrain. The Ella Landslide in North Canterbury is a deep-seated (~85 m) translational block slide that has failed on a 5 - 10 mm thick, kaolinite-rich, pre-sheared critical stratigraphic horizon. The residual strength of this sedimentary horizon, (C'R 2.6 - 2.7 kPa, and Ѳ'R = 16 - 21°), compared to the peak strength of the dominant lithology (C' = 176 kPa, and Ѳ' = 37°) defines a high strength contrast in the succession, and therefore a critical location for the basal failure surface of deep-seated slope failures. The (early to mid Holocene) Ella Landslide debris formed a large landslide dam in the Kate Stream catchment and this has significantly retarded rates of mass wasting in the middle catchment. Numerical stability analysis shows that this slope failure would have most likely required the influence of earthquake induced strong ground motion and the event is tentatively correlated to a Holocene event on the Omihi Fault. The influence of this slope failure is likely to affect the geomorphic development of the catchment on a scale of 10⁴ - 10⁵ years. In deeply incised catchments at the southeastern margin of the Maraetotara Plateau, southern Hawke's Bay, numerous widespread deep-seated landslides have basal failure surfaces defined by critical stratigraphic horizons in the form of thin « 20 mm) tuffaceous beds in the Makara Formation flysch (alternating sandstone and mudstone units). The geometry of deep-seated slope failures is controlled by these regularly spaced (~70 m), very weak critical stratigraphic horizons (C'R 3.8 - 14.2 kPa, and Ѳ'R = 2 - 5°), and regularly spaced (~45 m) and steeply dipping (-50°) critical conjugate joint/fault sets, which act as slide block release surfaces. Numerical stability analysis and historical precedent show that the temporal initiation of deep-seated landslides is directly controlled by short term tectonic forcing in the form of periodic large magnitude earthquakes. Published seismic hazard data shows the recurrence interval of earthquakes producing strong ground motions of 0.35g at the study site is every 150 yrs, however, if subduction thrust events are considered the level of strong ground motion may be much higher. Multiple occurrences of deep-seated slope failure are correlated to failure on the same critical stratigraphic horizon, in some cases in three adjacent catchments. Failure on multiple critical stratigraphic horizons leads to the development of a "stepped" landscape morphology. This slope form will be maintained during successive accelerated stream incision events (controlled by long term tectonic and climatic forcing) for as long as catchments are developing in this specific succession. Rock mass defect controlled deep seated landslides are controlling catchment head progression, landscape evolution and hillslope morphology in the Hawke's Bay study area and this has significant implications for the development of numerical landscape evolution models of landscapes formed in similar strata. Whereas the only known numerical model to consider deep seated landslides as an erosion process (ZSCAPE) considers them as stochastic in time and space, this study shows that this could not be applied to a landscape where the widespread spatial occurrence of deep-seated landslides is controlled by rock mass defects. In both of the study areas for this project, and by implication in many catchments in Tertiary soft rock terrain, deep-seated landslides controlled by rock mass defect strength, spacing and orientation, and tectonic and climatic forcing have an underlying control on landscape evolution. This study quantifies parameters for the development of numerical landscape evolution models that would assess the role of specific parameters, such as uplift rates, incision rates and earthquake recurrence in catchment evolution in Tertiary soft rock terrain.