Search

found 1060 results

Research papers, Victoria University of Wellington

On the 22nd of February, 2011 the city of Christchurch, New Zealand was crippled by a colossal earthquake. 185 people were killed, thousands injured and what remained was a city left in destruction and ruin. Thousands of Christchurch properties and buildings were left damaged beyond repair and the rich historical architecture of the Canterbury region had suffered irreparably.  This research will conduct an investigation into whether the use of mixed reality can aid in liberating Christchurch’s rich architectural heritage when applied to the context of destructed buildings within Christchurch.  The aim of this thesis is to formulate a narrative around the embodiment of mixed reality when subjected to the fragmentary historical architecture of Christchurch. Mixed reality will aspire to act as the defining ligature that holds the past, present and future of Christchurch’s architectural heritage intact as if it is all part of the same continuum.  This thesis will focus on the design of a memorial museum within a heavily damaged historical trust registered building due to the Christchurch earthquake. It is important and relevant to conceive the idea of such a design as history is what makes everything we know. The memories of the past, the being of the now and the projection of the future is the basis and fundamental imperative in honouring the city and people of Christchurch. Using the technologies of Mixed Reality and the realm of its counter parts the memorial museum will be a definitive proposition of desire in providing a psychological and physical understanding towards a better Christchurch, for the people of Christchurch.  This thesis serves to explore the renovation possibilities of the Canterbury provincial council building in its destructed state to produce a memorial museum for the Christchurch earthquake. The design seeks to mummify the building in its raw state that sets and develops the narrative through the spaces. The design intervention is kept at a required minimum and in doing so manifests a concentrated eloquence to the derelict space. The interior architecture unlocks the expression of history and time encompassed within a destructive and industrialised architectural dialogue. History is the inhabitant of the building, and using the physical and virtual worlds it can be set free.  This thesis informs a design for a museum in central Christchurch that celebrates and informs the public on past, present and future heritage aspects of Christchurch city. Using mixed reality technologies the spatial layout inside will be a direct effect of the mixed reality used and the exploration of the physical and digital heritage aspects of Christchurch. The use of technology in today’s world is so prevalent that incorporating it into a memorial museum for Christchurch would not only be interesting and exploratory but also offer a sense of pushing forward and striving beyond for a newer, fresher Christchurch. The memorial museum will showcase a range of different exhibitions that formulate around the devastating Christchurch earthquake. Using mixed reality technologies these exhibitions will dictate the spaces inside dependant on their various applications of mixed reality as a technology for architecture. Research will include; what the people of Canterbury are most dear to in regards to Christchurch’s historical environment; the use of mixed reality to visualise digital heritage, and the combination of the physical and digital to serve as an architectural mediation between what was, what is and what there could be.

Research papers, University of Canterbury Library

Context of the project: On 4 September 2010, 22 February 2011, 13 June 2011 and 23 December 2011 Christchurch suffered major earthquakes and aftershocks (well over 10,000) that have left the central city in ruins and many of the eastern suburbs barely habitable even now. The earthquakes on 22 February caused catastrophic loss of life with 185 people killed. The toll this has taken on the residents of Christchurch has been considerable, not least of all for the significant psychological impact and disruption it has had on the children. As the process of rebuilding the city commenced, it became clear that the arts would play a key role in maintaining our quality of life during difficult times. For me, this started with the children and the most expressive of all the art forms – music.

Research papers, University of Canterbury Library

The purpose of this thesis is to evaluate the seismic response of the UC Physics Building based on recorded ground motions during the Canterbury earthquakes, and to use the recorded response to evaluate the efficacy of various conventional structural analysis modelling assumptions. The recorded instrument data is examined and analysed to determine how the UC Physics Building performed during the earthquake-induced ground motions. Ten of the largest earthquake events from the 2010-11 Canterbury earthquake sequence are selected in order to understand the seismic response under various levels of demand. Peak response amplitude values are found which characterise the demand from each event. Spectral analysis techniques are utilised to find the natural periods of the structure in each orthogonal direction. Significant torsional and rocking responses are also identified from the recorded ground motions. In addition, the observed building response is used to scrutinise the adequacy of NZ design code prescriptions for fundamental period, response spectra, floor acceleration and effective member stiffness. The efficacy of conventional numerical modelling assumptions for representing the UC Physics Building are examined using the observed building response. The numerical models comprise of the following: a one dimensional multi degree of freedom model, a two dimensional model along each axis of the building and a three dimensional model. Both moderate and strong ground motion records are used to examine the response and subsequently clarify the importance of linear and non-linear responses and the inclusion of base flexibility. The effects of soil-structure interaction are found to be significant in the transverse direction but not the longitudinal direction. Non-linear models predict minor in-elastic behaviour in both directions during the 4 September 2010 Mw 7.1 Darfield earthquake. The observed torsional response is found to be accurately captured by the three dimensional model by considering the interaction between the UC Physics Building and the adjacent structure. With the inclusion of adequate numerical modelling assumptions, the structural response is able to be predicted to within 10% for the majority of the earthquake events considered.

Research papers, Lincoln University

Throughout 2010 and 2011, the city of Christchurch, New Zealand, suffered a series of devastating earthquakes that caused serious damage to the city. This study examines the effect these earthquakes have had on the sport of swimming in Christchurch. It specifically focuses on three different aspects of the swimming industry: indoor competitive swimming, open water swimming and learning to swim. It reports on the industry prior to the earthquakes before examining the developments subsequent to the shakes. The effects on both facilities and participation numbers were examined. Results showed that many indoor swimming facilities were lost which had significant flow-on effects. In addition, many beaches were out of bounds and almost half of the schools in Canterbury lost the use of their own swimming pools. In terms of participation numbers, results showed that while there was a decrease in the number of indoor competitive swimmers, Canterbury clubs were still highly competitive and their rankings at events either remained similar or bettered during and after the period of the earthquakes. On the other hand, an increase in the number of participants was seen in swimming lessons as temporary pools were constructed and subsidies were offered to cover transport and lesson costs. Open water swimming, however, seems to have been relatively unaffected by the earthquakes.This report was made possible through Lincoln University’s Summer Scholarship programme. The authors would also like to acknowledge those anonymous interviewees who provided some valuable insight into the swimming industry in Christchurch.

Research papers, University of Canterbury Library

The Sendai Framework for Disaster Risk Reduction 2015-2030 finds that, despite progress in disaster risk reduction over the last decade “evidence indicates that exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risk and a steady rise in disaster losses” (p.4, UNISDR 2015). Fostering cooperation among relevant stakeholders and policy makers to “facilitate a science-policy interface for effective decisionmaking in disaster risk management” is required to achieve two priority areas for action, understanding disaster risk and enhancing disaster preparedness (p. 13, p. 23, UNISDR 2015). In other topic areas, the term science-policy interface is used interchangeably with the term boundary organisation. Both terms are usually used refer to systematic collaborative arrangements used to manage the intersection, or boundary, between science and policy domains, with the aim of facilitating the joint construction of knowledge to inform decision-making. Informed by complexity theory, and a constructivist focus on the functions and processes that minimize inevitable tensions between domains, this conceptual framework has become well established in fields where large complex issues have significant economic and political consequences, including environmental management, biodiversity, sustainable development, climate change and public health. To date, however, there has been little application of this framework in the disaster risk reduction field. In this doctoral project the boundary management framework informs an analysis of the research response to the 2010-2011 Canterbury Earthquake Sequence, focusing on the coordination role of New Zealand’s national Natural Hazards Research Platform. The project has two aims. It uses this framework to tell the nuanced story of the way this research coordination role evolved in response to both the complexity of the unfolding post-disaster environment, and to national policy and research developments. Lessons are drawn from this analysis for those planning and implementing arrangements across the science-policy boundary to manage research support for disaster risk reduction decision-making, particularly after disasters. The second aim is to use this case study to test the utility of the boundary management framework in the disaster risk reduction context. This requires that terminology and concepts are explained and translated in terms that make this analysis as accessible as possible across the disciplines, domains and sectors involved in disaster risk reduction. Key findings are that the focus on balance, both within organisations, and between organisations and domains, and the emphasis on systemic effects, patterns and trends, offer an effective and productive alternative to the more traditional focus on individual or organisational performance. Lessons are drawn concerning the application of this framework when planning and implementing boundary organisations in the hazard and disaster risk management context.

Research papers, University of Canterbury Library

Natural disasters are highly traumatic for those who experience them, and they can have an immense and often lasting emotional impact (Cox et al., 2008). Emotion has been studied in linguistics through its enactment in language, and this field of research has increased over the past decades. Despite this, the expression of emotion in post-disaster narratives is a largely unexplored field of research. This thesis investigates how emotion is expressed in narratives taken from the QuakeBox corpus (Walsh et al., 2013), recorded, following the Christchurch earthquakes, in 2012 and rerecorded in 2019. I take a mixed methods approach, combining computer-based emotion recognition software and discourse analytic techniques, to explore the expression of emotion at both a broad and narrow level. Two emotion recognition programs, Empath (Fast et al., 2016) and Speechbrain (Ravanelli et al., 2021), are employed to measure the levels of positive and negative emotion detected in a wide dataset of participants, which are investigated in relation to the gender and age of participants, and the temporal difference between the first and second QuakeBox recordings. In a second phase, a subset of these participants’ narratives was analysed qualitatively, exploring the co-construction of emotion and identity through a social constructionist lens and examining the societal Discourses present in the earthquake narratives. The findings highlight the relevance of gender in the expression of emotion. Female speakers have higher levels of positive emotion than non-female speakers in the findings of both emotion recognition programs, and there is a clear gendered difference in the construction of identity in the narratives, influencing the expression of emotion. The expression of emotion also appears to be mediated by New Zealand culture. Within this, a Discourse of the Christchurch earthquakes emerges, with motifs of luck, gratitude, and community, which reflects the values of the people of Christchurch at the time. Findings reinforced in both phases of the analysis also indicate differences between the lexical content and acoustic features in the emotion expressions, supporting previous research that argues that the expression of emotion, as a performative act, does not reflect the speaker’s inner state directly. This research adds a new dimension to (socio)linguistic research on emotion, as well as providing insight into how crisis survivors display emotion in their post-disaster narratives.

Research papers, Victoria University of Wellington

We aim to investigate the role of insurance in business recovery following the devastating Christchurch earthquake in February, 22nd, 2011. We analyze data from two business surveys conducted after the earthquake to examine how insurance affected business operation in the aftermath of the earthquake both in the short-term and longer-term. For the short-term analysis, we use a combination of propensity score matching (PSM) and linear probability model (LPM) to analyze the data. We first estimate the propensity scores for insurance take-up of each firm conditional on the firm’s individual characteristics. Stratification based on the estimated propensity scores is used to match the treated (insured) and the control (uninsured) firms. We then estimate the probability of firms’ continuing operations with a set of control variables to account for the level of damage and disruption caused by the quake in each stratum. We find little evidence of any beneficial effect of insurance coverage on business continuity in the short-run. For the longer-term analysis, we analyze the available survey data using logistic regression. The result suggests that business interruption insurance significantly promotes increased level of long-term productivity for surviving firms following the earthquake.

Research papers, Lincoln University

This research provides an investigation into the impact on the North Island freight infrastructure, in the event of a disruption of the Ports of Auckland (POAL). This research is important to New Zealand, especially having experienced the Canterbury earthquake disaster in 2010/2011 and the current 2012 industrial action plaguing the POAL. New Zealand is a net exporter of a combination of manufactured high value goods, commodity products and raw materials. New Zealand’s main challenge lies in the fact of its geographical distances to major markets. Currently New Zealand handles approximately 2 million containers per annum, with a minimum of ~40% of those containers being shipped through POAL. It needs to be highlighted that POAL is classified as an import port in comparison to Port of Tauranga (POT) that has traditionally had an export focus. This last fact is of great importance, as in a case of a disruption of the POAL, any import consigned to the Auckland and northern region will need to be redirected through POT in a quick and efficient way to reach Auckland and the northern regions. This may mean a major impact on existing infrastructure and supply chain systems that are currently in place. This study is critical as an element of risk management, looking at how to mitigate the risk to the greater Auckland region. With the new Super City taking hold, the POAL is a fundamental link in the supply chain to the largest metropolitan area within New Zealand.

Research papers, University of Canterbury Library

During the 2011 M7.8 Kaikōura earthquake, ground motions recorded near the epicentre showed a significant spatial variation. The Te Mara farm (WTMC) station, the nearest to the epicentre, recorded 1g and 2.7g of horizontal and vertical peak ground accelerations (PGA), respectively. The nearby Waiu Gorge (WIGC) station recorded a horizontal PGA of 0.8g. Interestingly, however, the Culverden Airlie Farm (CULC) station that was very closely located to WIGC recorded a horizontal PGA of only 0.25g. This poster demonstrates how the local geological condition could have contributed to the spatially variable ground motions observed in the North Canterbury, based on the results of recently conducted geophysical investigations. The surficial geology of this area is dominated by alluvial gravel deposits with traces of silt. A borehole log showed that the thickness of the sediments at WTMC is over 76 metres. Interestingly, the shear wave velocity (Vs) profiles obtained from the three strong motion sites suggest unusually high shear wave velocity of the gravelly sediments. The velocity of sediments and the lack of clear peaks in the horizontal-to-vertical (H/V) spectral ratio at WTMC suggest that the large ground motion observed at this station was likely caused by the proximity of the station to the causative fault itself; the site effect was likely insignificant. Comparisons of H/V spectral ratios and Vs profiles suggest that the sediment thickness is much smaller at WIGC compared with CULC; the high PGA at WIGC was likely influenced by the high-frequency amplification caused by the response of shallow sediments.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

The performance of conventionally designed reinforced concrete (RC) structures during the 2011 Christchurch earthquake has demonstrated that there is greater uncertainty in the seismic performance of RC components than previously understood. RC frame and wall structures in the Christchurch central business district were observed to form undesirable cracks patterns in the plastic hinge region while yield penetration either side of cracks, and into development zones, were less than theoretical predictions. The implications of this unexpected behaviour: (i) significantly less available ductility; (ii) less hysteretic energy dissipation; and (iii) the localization of peak reinforcement strains, results in considerable doubt for the residual capacity of RC structures. The significance of these consequences has prompted a review of potential sources of uncertainty in seismic experimentation with the intention to improve the current confidence level for newly designed conventional RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, to consider the influence of loading history, concrete tensile strength, and reinforcement ratio on the performance of ‘real’ RC structures compared to experimental test specimens.

Research papers, Lincoln University

Disasters are often followed by a large-scale stimulus supporting the economy through the built environment, which can last years. During this time, official economic indicators tend to suggest the economy is doing well, but as activity winds down, the sentiment can quickly change. In response to the damaging 2011 earthquakes in Canterbury, New Zealand, the regional economy outpaced national economic growth rates for several years during the rebuild. The repair work on the built environment created years of elevated building activity. However, after the peak of the rebuilding activity, as economic and employment growth retracts below national growth, we are left with the question of how the underlying economy performs during large scale stimulus activity in the built environment. This paper assesses the performance of the underlying economy by quantifying the usual, demand-driven level of building activity at this time. Applying an Input–Output approach and excluding the economic benefit gained from the investment stimulus reveals the performance of the underlying economy. The results reveal a strong growing underlying economy, and while convergence was expected as the stimulus slowed down, the results found that growth had already crossed over for some time. The results reveal that the investment stimulus provides an initial 1.5% to 2% growth buffer from the underlying economy before the growth rates cross over. This supports short-term economic recovery and enables the underlying economy to transition away from a significant rebuild stimulus. Once the growth crosses over, five years after the disaster, economic growth in the underlying economy remains buoyant even if official regional economic data suggest otherwise.

Research papers, University of Canterbury Library

The 22nd February 2011, Mw 6.3 Christchurch earthquake in New Zealand caused major damage to critical infrastructure, including the healthcare system. The Natural Hazard Platform of NZ funded a short-term project called “Hospital Functions and Services” to support the Canterbury District Health Board’s (CDHB) efforts in capturing standardized data that describe the effects of the earthquake on the Canterbury region’s main hospital system. The project utilised a survey tool originally developed by researchers at Johns Hopkins University (JHU) to assess the loss of function of hospitals in the Maule and Bío-Bío regions following the 27th February 2010, Mw 8.8 Maule earthquake in Chile. This paper describes the application of the JHU tool for surveying the impact of Christchurch earthquake on the CDHB Hospital System, including the system’s residual capacity to deliver emergency response and health care. A short summary of the impact of the Christchurch earthquake on other CDHB public and private hospitals is also provided. This study demonstrates that, as was observed in other earthquakes around the world, the effects of damage to non-structural building components, equipment, utility lifelines, and transportation were far more disruptive than the minor structural damage observed in buildings (FEMA 2007). Earthquake related complications with re-supply and other organizational aspects also impacted the emergency response and the healthcare facilities’ residual capacity to deliver services in the short and long terms.

Research papers, University of Canterbury Library

School travel is a major aspect of a young person’s everyday activity. The relationship between the built environment that youth experience on their way to and from school, influences a number of factors including their development, health and wellbeing. This is especially important in low income areas where the built environment is often poorer, but the need for it to be high quality and accessible is greater. This study focusses on the community of Aranui, a relatively low income suburb in Christchurch, New Zealand. It pays particular attention to Haeata Community Campus, a state school of just under 800 pupils from year one through to year thirteen (ages 5-18). The campus opened in 2017 following the closure of four local schools (three primary and one secondary), as part of the New Zealand Government’s Education Renewal scheme following the Christchurch earthquakes of 2010/11. Dedicated effort toward understanding the local built environment, and subsequent travel patterns has been argued to be insufficiently considered. The key focus of this research was to understand the importance of the local environment in encouraging active school travel. The present study combines geospatial analysis, quantitative survey software Maptionnaire, and statistical models to explore the features of the local environment that influence school travel behaviour. Key findings suggest that distance to school and parental control are the most significant predictors of active transport in the study sample. Almost 75% of students live within two kilometres of the school, yet less than 40% utilise active transport. Parental control may be the key contributing factor to the disproportionate private vehicle use. However, active school travel is acknowledged as a complex process that is the product of many individual, household, and local environment factors. To see increased active transport uptake, the local environment needs to be of greater quality. Meaning that the built environment should be improved to be youth friendly, with greater walkability and safe, accessible cycling infrastructure.

Research papers, University of Canterbury Library

It is reported that natural disasters such as earthquakes impact significantly upon survivors’ psychological wellbeing. Little is known however about the impact of disasters upon the professional performance of survivor employees such as teachers. Using a survey research design with an emphasis upon a qualitative data collection, 39 teachers from 6 schools in the eastern suburbs of Christchurch, New Zealand rated the impact of the 2010 and 2011 earthquakes upon their professional performance and 13 volunteered to participate in a follow up focus group interviews. The data collected was interpreted via three theoretical/policy frameworks: the New Zealand Teacher Council mandatory requirements for teachers, the basic psychological needs theory and the inclusive transactional model of stress. Contrary to expectations, relationships with learners, colleagues, learner's whanau (family) and the wider community were on the whole perceived to be positively impacted by the earthquakes, while participation in professional development was regarded in more negative terms. The results indicated that teachers were able to continue (despite some stress reactions) because the basic psychological needs of being a teacher were not disrupted and indeed in some cases were enhanced. A model of teacher performance following a natural disaster is presented. Recommendations and implications (including future research undertakings) arising from the study are indicated. It was noted that given the importance of the school in supporting community recovery following a disaster, support for them and consideration of the role of teachers and the preparation for this should be given some priority.

Research papers, University of Canterbury Library

Objective: The nature of disaster research makes it difficult to adequately measure the impact that significant events have on a population. Large, representative samples are required, ideally with comparable data collected before the event. When Christchurch, New Zealand, was struck by multiple, devastating earthquakes, there presented an opportunity to investigate the effects of dose-related quakes (none, one, two or three over a 9-month period) on the cognition of Canterbury’s elderly population through the New Zealand Brain Research Institute’s (NZBRI’s) cognitive screening study. The related effects of having a concomitant medical condition, sex, age and estimated- full scale IQ (Est-FSIQ) on cognition were also investigated. Method: 609 participants were tested on various neuropsychological tests and a self-rated dementia scale in a one hour interview at the NZBRI. Four groups were established, based on the number of major earthquakes experienced at the time of testing: “EQ-dose: None” (N = 51) had experienced no quakes; “EQ-dose: One” (N = 193) had experienced the initial quake in September 2010; “EQ-dose: Two” (N = 82) also experienced the most devastating February 2011 quake; and “EQ-dose: Three” (N = 265) also the June 2011 quake at testing. Results: Two neuropsychological variables of Trail A and the AD8 were impacted by an EQ-dose effect, while having a medical condition was associated with poorer function on the MoCA, Rey Copy and Recall, Trail A, and AD8. Having a major medical condition led to worse performance on the Rey Copy and Recall following the major February earthquake. Males performed significantly better on Trail A and Rey Planning, while females better on the MoCA. Older participants (>73) had significantly lower scores on the MoCA than younger participants (<74), while those with a higher Est-FSIQ (>111) had better scores on the MoCA and Rey Recall than participants with a lower Est-FSIQ. Finally, predicted variable analysis (based on calculated, sample-specific Z-scores) failed to find a significant earthquake effect when variables of age, sex and Est-FSIQ were controlled for, while there was a significant effect of medical condition on each measure. Conclusion: The current thesis provides evidence suggesting resilience amongst Canterbury’s elderly population in the face of the sequence of significant quakes that struck the region over a year from September 2010. By contrast, having a major medical condition was a ‘more significant life event’ in terms of impact on cognition in this group.

Research papers, University of Canterbury Library

The 14 November 2016 Kaikōura earthquake had major impacts on New Zealand's transport system. Road, rail and port infrastructure was damaged, creating substantial disruption for transport operators, residents, tourists, and business owners in the Canterbury, Marlborough and Wellington regions, with knock-on consequences elsewhere. During both the response and recovery phases, a large amount of information and data relating to the transport system was generated, managed, analysed, and exchanged within and between organisations to assist decision making. To improve information and data exchanges and related decision making in the transport sector during future events and guide new resilience strategies, we present key findings from a recent post-earthquake assessment. The research involved 35 different stakeholder groups and was conducted for the Ministry of Transport. We consider what transport information was available, its usefulness, where it was sourced from, mechanisms for data transfer between organisations, and suggested approaches for continued monitoring.

Research papers, Lincoln University

The sample of water referred to in the present note was collected by the writer on the 21st January, 1889, in the Otira Gorge, from a spring which is stated to have been first discovered shortly after the earthquake of the 1st September, 1888. From the results obtained this water might be termed siliceous and sulphurous. It is essentially different from the water from the Hanmer Springs, and pertains more to the character of the waters of the Rotorua district. It differs, however, from these waters in having only a portion of its carbonic anhydride replaced by silica, and in containing less dissolved matter.

Research papers, University of Canterbury Library

On 22 February 2011, Canterbury and its largest city Christchurch experienced its second major earthquake within six months. The region is facing major economic and organisational challenges in the aftermath of these events. Approximately 25% of all buildings in the Christchurch CBD have been “red tagged” or deemed unsafe to enter. The New Zealand Treasury estimates that the combined cost of the February earthquake and the September earthquake is approximately NZ$15 billion[2]. This paper examines the national and regional economic climate prior to the event, discusses the immediate economic implications of this event, and the challenges and opportunities faced by organisations affected by this event. In order to facilitate recovery of the Christchurch area, organisations must adjust to a new norm; finding ways not only to continue functioning, but to grow in the months and years following these earthquakes. Some organisations relocated within days to areas that have been less affected by the earthquakes. Others are taking advantage of government subsidised aid packages to help retain their employees until they can make long-term decisions about the future of their organisation. This paper is framed as a “report from the field” in order to provide insight into the early recovery scenario as it applies to organisations affected by the February 2011 earthquake. It is intended both to inform and facilitate discussion about how organisations can and should pursue recovery in Canterbury, and how organisations can become more resilient in the face of the next crisis.

Research papers, Victoria University of Wellington

The standard way in which disaster damages are measured involves examining separately the number of fatalities, of injuries, of people otherwise affected, and the financial damage that natural disasters cause. Here, we implement a novel way to aggregate these separate measures of disaster impact and apply it to two catastrophic events from 2011: the Christchurch (New Zealand) earthquakes and the Greater Bangkok (Thailand) flood. This new measure, which is similar to the World Health Organization's calculation of Disability Adjusted Life Years (DALYs) lost due to the burden of diseases and injuries, is described in detail in Noy [7]. It allows us to conclude that New Zealand lost 180 thousand lifeyears as a result of the 2011 events, and Thailand lost 2644 thousand lifeyears. In per capita terms, the loss is similar, with both countries losing about 15 days per person due to the 2011 catastrophic events in these two countries. © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Research papers, University of Canterbury Library

The magnitude Mw7.8 ‘Kaikōura’ earthquake occurred shortly after midnight on 14 November 2016. This paper presents an overview of the geotechnical impacts on the South Island of New Zealand recorded during the postevent reconnaissance. Despite the large moment magnitude of this earthquake, relatively little liquefaction was observed across the South Island, with the only severe manifestation occurring in the young, loose alluvial deposits in the floodplains of the Wairau and Opaoa Rivers near Blenheim. The spatial extent and volume of liquefaction ejecta across South Island is significantly less than that observed in Christchurch during the 2010-2011 Canterbury Earthquake Sequence, and the impact of its occurrence to the built environment was largely negligible on account of the severe manifestations occurring away from the areas of major development. Large localised lateral displacements occurred in Kaikōura around Lyell Creek. The soft fine-grained material in the upper portions of the soil profile and the free face at the creek channel were responsible for the accumulation of displacement during the ground shaking. These movements had severely impacted the houses which were built close (within the zone of large displacement) to Lyell Creek. The wastewater treatment facility located just north of Kaikōura also suffered tears in the liners of the oxidation ponds and distortions in the aeration system due to ground movements. Ground failures on the Amuri and Emu Plains (within the Waiau Valley) were small considering the large peak accelerations (in excess of 1g) experienced in the area. Minor to moderate lateral spreading and ejecta was observed at some bridge crossings in the area. However, most of the structural damage sustained by the bridges was a result of the inertial loading, and the damage resulting from geotechnical issues were secondary.

Research papers, University of Canterbury Library

This is an ethnographic case study, tracking the course of arguments about the future of a city’s central iconic building, damaged following a major earthquake sequence. The thesis plots this as a social drama and examines the central discourses of the controversy. The focus of the drama is the Anglican neo-Gothic Christ Church Cathedral, which stands in the central square of Christchurch, New Zealand. A series of major earthquakes in 2010/2011 devastated much of the inner city, destroying many heritage-listed buildings. The Cathedral was severely damaged and was declared by Government officials in 2011 to be a dangerous building, which needed to be demolished. The owners are the Church Property Trustees, chaired by Bishop Victoria Matthews, a Canadian appointed in 2008. In March 2012 Matthews announced that the Cathedral, because of safety and economic factors, would be deconstructed. Important artefacts were to be salvaged and a new Cathedral built, incorporating the old and new. This decision provoked a major controversy, led by those who claimed that the building could and should be restored. Discourses of history and heritage, memory, place and identity, ownership, economics and power are all identified, along with the various actors, because of their significance. However, the thesis is primarily concerned with the differing meanings given to the Cathedral. The major argument centres on the symbolic interaction between material objects and human subjects and the various ways these are interpreted. At the end of the research period, December 2015, the Christ Church Cathedral stands as a deteriorating wreck, inhabited by pigeons and rats and shielded by protective, colourfully decorated wooden fences. The decision about its future remains unresolved at the time of writing.

Research papers, Lincoln University

This thesis is a theoretical exploration of ‘remembrance’ and its production in the interactions between people/s and the landscape. This exploration takes place in the broad context of post earthquake Christchurch with a focus on public spaces along the Ōtākaro – Avon river corridor. Memory is universal to human beings, yet memories are subjective and culturally organized and produced - the relationship between memory and place therefore operates at individual and collective levels. Design responses that facilitate opportunities to create new memories, and also acknowledge the remembered past of human – landscape relationships are critical for social cohesion and wellbeing. I draw on insights from a range of theoretical sources, including critical interpretive methodologies, to validate subjective individual and group responses to memory and place. Such approaches also allowed me, as the researcher, considerable freedom to apply memory theory through film to illustrate ways we can re-member ourselves to our landscapes. The Ōtākaro-Avon river provided the site through and in which film strategies for remembrance are explored. Foregrounding differences in Māori and settler cultural orientations to memory and landscape, has highlighted the need for landscape design to consider remembrance - those cognitive and unseen dimensions that intertwine people and place. I argue it is our task to make space for such diverse relationships, and to ensure these stories and memories, embodied in landscape can be read through generations. I do not prescribe methods or strategies; rather I have sought to encourage thinking and debate and to suggest approaches through which the possibilities for remembrance may be enhanced.

Research papers, Lincoln University

This research investigates creativity in a post-disaster setting. The data explore creativity at the intersection of the affected community of Christchurch, New Zealand and the social processes that followed the earthquakes of 2010 - 2012. Personal and contextual influences on creative ideas implemented for community or commercial benefit are also examined. Viewed as creative, unique approaches to post-disaster problem solving were celebrated locally, nationally and internationally (Bergman, 2014; Wesener, 2015; Cloke & Conradson, 2018). Much has been written about creativity, particularly creativity in organisations and in business. However, little is known with regards to who creates after a disaster, why individuals choose to do so and what impact the post-disaster context has on their creative activity. This exploratory study draws on the literature from the fields of creativity, disasters, psychology, sociology and entrepreneurship to interpret first-hand accounts of people who acted on creative ideas in a physically and socially altered environment. A mixed method - albeit predominantly qualitative - approach to data gathering was adopted that included interviews (n=45) with participants who had been the primary drivers of creative ideas implemented in Christchurch after September 2010 – the first major (7.1 magnitude) earthquake in a prolonged sequence of thousands of aftershocks. Key findings include that a specific type of creativity results from the ‘collision’ between individuals and social processes activated by a disaster situation. This type of creativity could be best categorised as ‘little c’ or socially adaptive and emerges through a prosocial filter. There is wide consensus amongst creativity researchers - principally social psychologists - that for output to be considered creative it must be both novel and useful (Runco & Jaegar, 2012). There is greater tolerance for the novelty component after a disaster as novelty itself has greater utility, either as a distraction or because alternatives are few. Existing creativity models show context as input – an additional component of the creative process – but after a disaster the event itself becomes the catalyst for social processes that result in the creativity seen. Most participants demonstrated characteristics commonly associated with creativity and could be categorised as either a ‘free thinker’ and/or an ‘opportunist’. Some appear preadapted to create and thrive in unstable circumstances. Findings from participants’ completion of a Ten Item Personality Inventory (TIPI) showed an apparent reduced need for extraversion in relation to implementing creative ventures in society. This factor, along with higher levels of agreeableness may indicate a potentially detrimental effect on the success of creative ideas established after a disaster, despite earnest intentions. Three new models are presented to illustrate the key findings of this study. The models imply that disasters enhance both the perceived value of creativity and the desire to act creatively for prosocial ends. The models also indicate that these disaster influenced changes are likely to be temporary.

Research papers, University of Canterbury Library

Surface rupture and slip from the Mw 7.8 2016 Kaikōura Earthquake have been mapped in the region between the Leader and Charwell rivers using field mapping and LiDAR data. The eastern Humps, north Leader and Conway-Charwell faults ruptured the ground surface in the study area. The E-NE striking ‘The Humps’ Fault runs along the base of the Mt Stewart range front, appears to dip steeply NW and intersects the NNW-NNE Leader Fault which itself terminates northwards at the NE striking Conway-Charwell Fault. The eastern Humps Fault is up to the NW and accommodates oblique slip with reverse and right lateral displacement. Net slip on ‘The Humps’ Fault is ≤4 m and produced ≤4 m uplift of the Mt Stewart range during the earthquake. The Leader Fault strikes NNW-NNE with dips ranging from ~10° west to 80° east and accommodated ≤4 m net slip comprising left-lateral and up-to-the-west vertical displacement. Like the Humps west of the study area, surface-rupture of the Leader Fault occurred on multiple strands. The complexity of rupture on the Leader Fault is in part due to the occurrence of bedding-parallel slip within the Cretaceous-Cenozoic sequence. Although the Mt Stewart range front is bounded by ‘The Humps’ Fault, in the study area neither this fault nor the Leader Fault were known to have been active before the earthquake. Fieldwork and trenching investigations are ongoing to characterise the geometry, kinematics and paleoseismic history of the mapped active faults.

Research papers, University of Canterbury Library

Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.

Research papers, University of Canterbury Library

The increase of the world's population located near areas prone to natural disasters has given rise to new ‘mega risks’; the rebuild after disasters will test the governments’ capabilities to provide appropriate responses to protect the people and businesses. During the aftermath of the Christchurch earthquakes (2010-2012) that destroyed much of the inner city, the government of New Zealand set up a new partnership between the public and private sector to rebuild the city’s infrastructure. The new alliance, called SCIRT, used traditional risk management methods in the many construction projects. And, in hindsight, this was seen as one of the causes for some of the unanticipated problems. This study investigated the risk management practices in the post-disaster recovery to produce a specific risk management model that can be used effectively during future post-disaster situations. The aim was to develop a risk management guideline for more integrated risk management and fill the gap that arises when the traditional risk management framework is used in post-disaster situations. The study used the SCIRT alliance as a case study. The findings of the study are based on time and financial data from 100 rebuild projects, and from surveying and interviewing risk management professionals connected to the infrastructure recovery programme. The study focussed on post-disaster risk management in construction as a whole. It took into consideration the changes that happened to the people, the work and the environment due to the disaster. System thinking, and system dynamics techniques have been used due to the complexity of the recovery and to minimise the effect of unforeseen consequences. Based on an extensive literature review, the following methods were used to produce the model. The analytical hierarchical process and the relative importance index have been used to identify the critical risks inside the recovery project. System theory methods and quantitative graph theory have been used to investigate the dynamics of risks between the different management levels. Qualitative comparative analysis has been used to explore the critical success factors. And finally, causal loop diagrams combined with the grounded theory approach has been used to develop the model itself. The study identified that inexperienced staff, low management competency, poor communication, scope uncertainty, and non-alignment of the timing of strategic decisions with schedule demands, were the key risk factors in recovery projects. Among the critical risk groups, it was found that at a strategic management level, financial risks attracted the highest level of interest, as the client needs to secure funding. At both alliance-management and alliance-execution levels, the safety and environmental risks were given top priority due to a combination of high levels of emotional, reputational and media stresses. Risks arising from a lack of resources combined with the high volume of work and the concern that the cost could go out of control, alongside the aforementioned funding issues encouraged the client to create the recovery alliance model with large reputable construction organisations to lock in the recovery cost, at a time when the scope was still uncertain. This study found that building trust between all parties, clearer communication and a constant interactive flow of information, established a more working environment. Competent and clear allocation of risk management responsibilities, cultural shift, risk prioritisation, and staff training were crucial factors. Finally, the post-disaster risk management (PDRM) model can be described as an integrated risk management model that considers how the changes which happened to the environment, the people and their work, caused them to think differently to ease the complexity of the recovery projects. The model should be used as a guideline for recovery systems, especially after an earthquake, looking in detail at all the attributes and the concepts, which influence the risk management for more effective PDRM. The PDRM model is represented in Causal Loops Diagrams (CLD) in Figure 8.31 and based on 10 principles (Figure 8.32) and 26 concepts (Table 8.1) with its attributes.

Research papers, University of Canterbury Library

Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.