Following the 2010/2011 Canterbury (New Zealand) earthquakes the seismic design of buildings with precast concrete panels has received significant attention. Although this form of construction generally performed adequately in Christchurch, there were a considerable number of precast concrete panel connection failures. This observation prompted a review of more than 4700 panel details to establish representative details used in both existing and new multi-storey and low rise industrial precast concrete buildings. The detailing and quantity of each reviewed connection type in the sampled data is reported, and advantages and potential deficiencies of each connection type are discussed. Following the Canterbury earthquakes, it was observed that brittle failure had occurred in some grouted metal duct connections used for precast concrete wall panels, resulting in recommendations for more robust detailing of this connection type. A set of experimental tests was subsequently performed to investigate the in-plane seismic behaviour of precast concrete wall panel connections. This testing comprised of seven reversed cyclic in-plane tests of fullscale precast concrete wall panels having wall-to-foundation grouted metal duct connections. Walls with existing connection detailing were found to perform adequately when carrying low axial loads, but performance was found to be less satisfactory as the axial load and wall panel length increased. The use of new recommended detailing was observed to prevent brittle connection response and to improve the robustness of the reinforcement splice. A parametric investigation was conducted using the finite element method to predict the failure mode of metal duct connections. From the results of the parametric study on metal duct connections it was identified that there were three possible failure modes, being reinforcement fracture, concrete spalling without metal duct pull out, and concrete spalling with metal duct pull-out. An alternative simple analytical method was proposed in order to determine the type of connection failure without using a time-consuming finite element method. Grouted sleeves inserts are an alternative connector that is widely used to connect wall panels to the foundations. The two full-scale wall panels were subjected to reversed cyclic in-plane demands until failure of either the connection or the wall panel. Wall panel failure was due to a combination of connection reinforcement pulling-out from the coupler and reinforcement fracture. In addition, non-embedded grouted sleeve tests filled with different quality of grout were conducted by subjecting these coupler assemblages to cyclic and monotonic forces.
A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.
This study is a qualitative investigation into the decision-making behaviour of commercial property owners (investors and developers) who are rebuilding in a city centre after a major disaster. In 2010/2011, Christchurch, the largest city in the South Island of New Zealand, was a site of numerous earthquakes. The stronger earthquakes destroyed many buildings and public infrastructure in the commercial inner city. As a result, affected property owners lost all or most of their buildings, a significant proportion of which were old and in the last phase of their life span. They had to negotiate pay-outs with insurance companies and decide, once paid out, whether they should rebuild in Christchurch or sell up and invest elsewhere. The clear majority of those who decided to reinvest in and rebuild the city are ‘locals’, almost all of whom had no prior experience of property development. Thus, in a post-disaster environment, most of these property owners have transitioned from being just being passive investors to active property developers. Their experience was interpreted using primary data gathered from in-depth and semi-structured interviews with twenty-one “informed property people” who included commercial property owners; property agents or consultants; representatives of public-sector agencies and financial institutions. The study findings showed that the decision-making behaviour of property investors and developers rebuilding after a major disaster did not necessarily follow a strict financial or profit motive as prescribed in the mainstream or neo-classical economics property literature. Rather, their decision-making behaviour has been largely shaped by emotional connections and external factors associated with their immediate environment. The theoretical proposition emerging from this study is that after a major disaster, local urban property owners are faced with two choices “to stay” or “to go”. Those who decide to stay and rebuild are typically very committed individuals who have a feeling of ownership, belonging and attachment to the city in which they live and work. These are people who will often take the lead in commercial property development, proactively making decisions and seeking positive investment outcomes for themselves which in turn result in revitalised commercial urban precincts.
Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.
Livelihood holds the key to a rapid recovery following a large-scale devastating disaster, building its resilience is of paramount importance. While much attention has been given to how to help people who are displaced from their jobs to regain employment, little research on livelihood resilience has been undertaken for those relocated communities following a disaster event. By studying five re-located villages post-2004 Indian Ocean Tsunami in Banda Aceh and Aceh Besar, Indonesia, this research has identified the indicators of livelihood resilience and the critical factors driving it for post-disaster relocated communities. A mixed approach, combining questionnaire surveys, semistructured interviews, and field observations, was used for the collection of data. Housing entitlement, the physical and mental health of residents, access to external livelihood support and the provision of infrastructure and basic services were identified as amongst the most critical indicators that represent the level of livelihood resilience. Early recovery income support, physical and mental health, availability and timeliness of livelihood support, together with cultural sensitivity and governance structure, are amongst the most important factors. Given the nature of resettlement, access to infrastructure, location of relocated sites, the safety of the neighbourhood and the ability to transfer to other jobs/skills also play an important role in establishing sustained employment for relocated communities in Indonesia. Those indicators and factors were synthesised into a framework which was further tested in the recovery of Christchurch, and Kaikoura, New Zealand during their recovery from devastating earthquakes. It is suggested that the framework can be used by government agencies and aid organisations to assess the livelihood resilience of post-disaster relocated communities. This will help better them plan support policies and/or prioritise resilience investment strategies to ensure that the recovery needs of those relocated are best met.
For some people, religion, spirituality and faith (RSF) serves an important function, helping them deal with difficult everyday life challenges. This qualitative ethnographic study examines how and in what ways a group of Cantabrians engaged with RSF in dealing with diverse forms of significant trauma – from moments of crisis through to more extended processes of recovery. The research is located within the context of post-earthquake Christchurch, and is based on fieldwork undertaken in 2012–2013. It explores the experiences of respondents representing traditional Christian and non-orthodox, non-Christian faith paths. The thesis draws on data from participant stories to emphasise the subjective experience of RSF and trauma. It argues that in times of crisis, some people draw on RSF to help them address difficult life challenges. The study demonstrates the breadth, diversity and significance of such resourcing, as well as the sometimes surprising, unanticipated forms that this engagement with RSF may take. Contrary to theories that emphasise the marginalisation of religion during times of intense distress, the thesis shows that in varying moments of crisis, people for whom RSF is important, may draw on diverse forms of RSF as a matter of priority to help them.
This dissertation explores the advocacy for the Christchurch Town Hall that occurred in 2012-2015 after the Canterbury Earthquakes. It frames this advocacy as an instance of collective-action community participation in a heritage decision, and explores the types of heritage values it expressed, particularly social values. The analysis contextualises the advocacy in post-quake Christchurch, and considers its relationship with other developments in local politics, heritage advocacy, and urban activism. In doing so, this dissertation considers how collective action operates as a form of public participation, and the practical implications for understanding and recognising social value. This research draws on studies of practices that underpin social value recognition in formal heritage management. Social value is held by communities outside institutions. Engaging with communities enables institutions to explore the values of specific places, and to realise the potential of activating local connections with heritage places. Such projects can be seen as participatory practices. However, these processes require skills and resources, and may not be appropriate for all places, communities and institutions. However, literature has understudied collective action as a form of community participation in heritage management. All participation processes have nuances of communities, processes, and context, and this dissertation analyses these in one case. The research specifically asked what heritage values (especially social values) were expressed through collective action, what the relationship was with the participation processes, communities, and wider situation that produced them, and the impact on institutional rhetoric and decisions. The research analysed values expressed in representations made to council in support of the Town Hall. It also used documentary sources and interviews with key informants to analyse the advocacy and decision-making processes and their relationships with the wider context and other grassroots activities. The analysis concluded that the values expressed intertwined social and professional values. They were related to the communities and circumstance that produced them, as an advocacy campaign for a civic heritage building from a Western architectural tradition. The advocacy value arguments were one of several factors that impacted the decision. They have had a lasting impact on rhetoric around the Town Hall, as was a heritage-making practice in its own right. This dissertation makes a number of contributions to the discussion of social value and community in heritage. It suggests connections between advocacy and participation perspectives in heritage. It recommends consideration of nuances of communities, context, and place meanings when using heritage advocacy campaigns as evidence of social value. It adds to the literature on heritage advocacy, and offers a focused analysis of one of many heritage debates that occurred in post-quake Christchurch. Ultimately, it encourages practice to actively integrate social and community values and to develop self-reflexive engagement and valuation processes. Despite inherent challenges, participatory processes offer opportunities to diversify understandings of value, co-produce heritage meanings with communities, and empower citizens in democratic processes around the places they live with and love.
<b>In the late 1960s the Wellington City Council surveyed all the commercial buildings in the city and marked nearly 200 as earthquake prone. The owners were given 15 years to either strengthen or demolish their buildings. The end result was mass demolition throughout the seventies and eighties.¹ Prompted by the Christchurch earthquakes, once again the council has published a list of over 630 earthquake prone buildings that need to be strengthened or demolished by 2030.²Of these earthquake prone buildings, the majority were built between 1880 and 1930, with 125 buildings appearing on the Wellington City Council Heritage Building List.³ This list accounts for a significant proportion of character buildings in the city. There is a danger that the aesthetic integrity of our city will be further damaged due to the urgent need to strengthen these buildings. Many of the building owners are resistant because of the high cost. By adapting these buildings to house co-workspaces, we can gain more than just the retention of the building’s heritage. The seismic upgrade provides the opportunity for the office space to be redesigned to suit changes in the ways we work. Through a design-based research approach this thesis proposes a framework that clarifies the process of adapting Wellington’s earthquake prone heritage buildings to accommodate co-working. This framework deals with the key concepts of program, structure and heritage. The framework is tested on one of Wellington’s earthquake prone heritage buildings, the Wellington Working Men’s Club, in order to demonstrate what can be gained from this strengthening process. ¹ Reid, J., “Hometown Boomtown,” in NZ On Screen (Wellington, 1983).</b>
² Wellington City Council, List of Earthquake Prone Buildings as at 06/03/2017. (Wellington: Absolutely Positively Wellington. 2017).
³ ibid.
One of the most controversial issues highlighted by the 2010-2011 Christchurch earthquake series and more recently the 2016 Kaikoura earthquake, has been the evident difficulty and lack of knowledge and guidelines for: a) evaluation of the residual capacity damaged buildings to sustain future aftershocks; b) selection and implementation of a series of reliable repairing techniques to bring back the structure to a condition substantially the same as prior to the earthquake; and c) predicting the cost (or cost-effectiveness) of such repair intervention, when compared to fully replacement costs while accounting for potential aftershocks in the near future. As a result of such complexity and uncertainty (i.e., risk), in combination with the possibility (unique in New Zealand when compared to most of the seismic-prone countries) to rely on financial support from the insurance companies, many modern buildings, in a number exceeding typical expectations from past experiences at an international level, have ended up being demolished. This has resulted in additional time and indirect losses prior to the full reconstruction, as well as in an increase in uncertainty on the actual relocation of the investment. This research project provides the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information to assess the residual capacity of damage reinforced concrete buildings, and to evaluate the feasibility of repairing techniques, in order to support their delicate decision-making process of repair vs. demolition or replacement. Literature review on effectiveness of epoxy injection repairs, as well as experimental tests on full-scale beam-column joints shows that repaired specimens have a reduced initial stiffness compared with the undamaged specimen, with no apparent strength reduction, sometimes exhibiting higher displacement ductility capacities. Although the bond between the steel and concrete is only partially restored, it still allows the repaired specimen to dissipate at least the same amount of hysteretic energy. Experimental tests on buildings subjected to earthquake loading demonstrate that even for severe damage levels, the ability of the epoxy injection to restore the initial stiffness of the structure is significant. Literature review on damage assessment and repair guidelines suggests that there is consensus within the international community that concrete elements with cracks less than 0.2 mm wide only require cosmetic repairs; epoxy injection repairs of cracks less and 2.0 mm wide and concrete patching of spalled cover concrete (i.e., minor to moderate damage) is an appropiate repair strategy; and for severe damaged components (e.g., cracks greater than 2.0 mm wide, crushing of the concrete core, buckling of the longitudinal reinforcement) local replacement of steel and/or concrete in addition to epoxy crack injection is more appropriate. In terms of expected cracking patterns, non-linear finite element investigations on well-designed reinforced concrete beam-to-column joints, have shown that lower number of cracks but with wider openings are expected to occur for larger compressive concrete strength, f’c, and lower reinforcement content, ρs. It was also observed that the tensile concrete strength, ft, strongly affects the expected cracking pattern in the beam-column joints, the latter being more uniformly distributed for lower ft values. Strain rate effects do not seem to play an important role on the cracking pattern. However, small variations in the cracking pattern were observed for low reinforcement content as it approaches to the minimum required as per NZS 3101:2006. Simple equations are proposed in this research project to relate the maximum and residual crack widths with the steel strain at peak displacement, with or without axial load. A literature review on fracture of reinforcing steel due to low-cycle fatigue, including recent research using steel manufactured per New Zealand standards is also presented. Experimental results describing the influence of the cyclic effect on the ultimate strain capacity of the steel are also discussed, and preliminary equations to account for that effect are proposed. A literature review on the current practice to assess the seismic residual capacity of structures is also presented. The various factors affecting the residual fatigue life at a component level (i.e., plastic hinge) of well-designed reinforced concrete frames are discussed, and equations to quantify each of them are proposed, as well as a methodology to incorporate them into a full displacement-based procedure for pre-earthquake and post-earthquake seismic assessment.
Land cover change information in urban areas supports decision makers in dealing with public policy planning and resource management. Remote sensing has been demonstrated as an efficient and accurate way to monitor land cover change over large extents. The Canterbury Earthquake Sequence (CES) caused massive damage in Christchurch, New Zealand and resulted in significant land cover change over a short time period. This study combined two types of remote sensing data, aerial imagery (RGB) and LiDAR, as the basis for quantifying land cover change in Christchurch between 2011 – 2015, a period corresponding to the five years immediately following the 22 February 2011 earthquake, which was part of the CES. An object based image analysis (OBIA) approach was adopted to classify the aerial imagery and LiDAR data into seven land cover types (bare land, building, grass, shadow, tree and water). The OBIA approach consisted of two steps, image segmentation and object classification. For the first step, this study used multi-level segmentation to better segment objects. For the second step, the random forest (RF) classifier was used to assign a land cover type to each object defined by the segmentation. Overall classification accuracies for 2011 and 2015 were 94.0% and 94.32%, respectively. Based on the classification result, land cover changes between 2011 and 2015 were then analysed. Significant increases were found in road and tree cover, while the land cover types that decreased were bare land, grass, roof, water. To better understand the reasons for those changes, land cover transitions were calculated. Canopy growth, seasonal differences and forest plantation establishment were the main reasons for tree cover increase. Redevelopment after the earthquake was the main reason for road area growth. By comparing the spatial distribution of these transitions, this study also identified Halswell and Wigram as the fastest developing suburbs in Christchurch. These results provided quantitative information for the effects of CES, with respect to land cover change. They allow for a better understanding for the current land cover status of Christchurch. Among those land cover changes, the significant increase in tree cover aroused particularly interest as urban forests benefit citizens via ecosystem services, including health, social, economic, and environmental benefits. Therefore, this study firstly calculated the percentages of tree cover in Christchurch’s fifteen wards in order to provide a general idea of tree cover change in the city extent. Following this, an automatic individual tree detection and crown delineation (ITCD) was undertaken to determine the feasibility of automated tree counting. The accuracies of the proposed approach ranged between 56.47% and 92.11% in thirty different sample plots, with an overall accuracy of 75.60%. Such varied accuracies were later found to be caused by the fixed tree detection window size and misclassifications from the land cover classification that affected the boundary of the CHM. Due to the large variability in accuracy, tree counting was not undertaken city-wide for both time periods. However, directions for further study for ITCD in Christchurch could be exploring ITCD approaches with variable window size or optimizing the classification approach to focus more on producing highly accurate CHMs.
This thesis examines the opportunities for young citizens in Christchurch to be engaged in city planning post-disaster. This qualitative study was conducted eight years after the 2010-2011 earthquakes and employed interviews with 18 young people aged between 12-24 years old, 14 of whom were already actively engaged in volunteering or participating in a youth council. It finds that despite having sought out opportunities for youth leadership and advocacy roles post-disaster, young people report frustration that they are excluded from decision-making and public life. These feelings of exclusion were described by young people as political, physical and social. Young people felt politically excluded from decision-making in the city, with some youth reporting that they did not feel listened to by decision-makers or able to make a difference. Physical exclusion was also experienced by the young people I interviewed, who reported that they felt excluded from their city and neighbourhood. This ranged from feeling unwelcome in certain parts of the city due to perceived social stratification, to actual exclusion from newly privatised areas in a post-quake recovery city. Social exclusion was reported by young people in the study in regard to their sense of marginalisation from the wider community, due to structural and social barriers. Among these, they observed a sense of prejudice towards them and other youth due to their age, class and/or ethnicity. The barriers to their participation and inclusion, and their aspirations for Christchurch post-disaster are discussed, as well as the implications of exclusion for young people’s wellbeing and sense of belonging. Results of this study contribute to the literature that challenges the sole focus on children and young peoples’ vulnerability post-disaster, reinforcing their capacity and desire to contribute to the recovery of their city and community (Peek, 2008). This research also challenges the narrative that young people are politically apathetic (Norris, 2004; Nissen, 2017), and adds to our understandings of the way that disasters can concentrate power amongst certain groups, in this case excluding young people generally from decision-making and public life. I conclude with some recommendations for a more robust post-disaster recovery in Christchurch, in ways that are more inclusive of young people and supportive of their wellbeing.
Background: We are in a period of history where natural disasters are increasing in both frequency and severity. They are having widespread impacts on communities, especially on vulnerable communities, those most affected who have the least ability to prepare or respond to a disaster. The ability to assemble and effectively manage Interagency Emergency Response Teams (IERTs) is critical to navigating the complexity and chaos found immediately following disasters. These teams play a crucial role in the multi-sectoral, multi-agency, multi-disciplinary, and inter-organisational response and are vital to ensuring the safety and well-being of vulnerable populations such as the young, aged, and socially and medically disadvantaged in disasters. Communication is key to the smooth operation of these teams. Most studies of the communication in IERTs during a disaster have been focussed at a macro-level of examining larger scale patterns and trends within organisations. Rarely found are micro-level analyses of interpersonal communication at the critical interfaces between collaborating agencies. This study set out to understand the experiences of those working at the interagency interfaces in an IERT set up by the Canterbury District Health Board to respond to the needs of the vulnerable people in the aftermath of the destructive earthquakes that hit Canterbury, New Zealand, in 2010-11. The aim of the study was to gain insights about the complexities of interpersonal communication (micro-level) involved in interagency response coordination and to generate an improved understanding into what stabilises the interagency communication interfaces between those agencies responding to a major disaster. Methods: A qualitative case study research design was employed to investigate how interagency communication interfaces were stabilised at the micro-level (“the case”) in the aftermath of the destructive earthquakes that hit Canterbury in 2010-11 (“the context”). Participant recruitment was undertaken by mapping which agencies were involved within the IERT and approaching representatives from each of these agencies. Data was collected via individual interviews using a semi-structured interview guide and was based on the “Critical Incident Technique”. Subsequently, data was transcribed verbatim and subjected to inductive analysis. This was underpinned theoretically by Weick’s “Interpretive Approach” and supported by Nvivo qualitative data analysis software. Results: 19 participants were interviewed in this study. Out of the inductive analysis emerged two primary themes, each with several sub-factors. The first major theme was destabilising/disruptive factors of interagency communication with five sub-factors, a) conflicting role mandates, b) rigid command structures, c) disruption of established communication structures, d) lack of shared language and understanding, and e) situational awareness disruption. The second major theme stabilising/steadying factors in interagency communication had four sub-factors, a) the establishment of the IERT, b) emergent novel communication strategies, c) establishment of a liaison role and d) pre-existing networks and relationships. Finally, there was a third sub-level identified during inductive analysis, where sub-factors from both primary themes were noted to be uniquely interconnected by emergent “consequences” arising out of the disaster context. Finally, findings were synthesised into a conceptual “Model of Interagency Communication at the Micro-level” based on this case study of the Canterbury earthquake disaster response. Discussion: The three key dimensions of The People, The Connections and The Improvisations served as a framework for the discussion of what stabilises interagency communication interfaces in a major disaster. The People were key to stabilising the interagency interfaces through functioning as a flexible conduit, guiding and navigating communication at the interagency interfaces and improving situational awareness. The Connections provided the collective competence, shared decision-making and prior established relationships that stabilised the micro-level communication at interagency interfaces. And finally, The Improvisations i.e., novel ideas and inventiveness that emerge out of rapidly changing post-disaster environments, also contributed to stabilisation of micro-level communication flows across interagency interfaces in the disaster response. “Command and control” hierarchical structures do provide clear processes and structures for teams working in disasters to follow. However, improvisations and novel solutions are also needed and often emerge from first responders (who are best placed to assess the evolving needs in a disaster where there is a high degree of uncertainty). Conclusion: This study highlights the value of incorporating an interface perspective into any study that seeks to understand the processes of IERTs during disaster responses. It also strengthens the requirement for disaster management frameworks to formally plan for and to allow for the adaptive responsiveness of local teams on the ground, and legitimise and recognise the improvisations of those in the role of emergent boundary spanners in a disaster response. This needs to be in addition to existing formal disaster response mechanisms. This study provides a new conceptual model that can be used to guide future case studies exploring stability at the interfaces of other IERTs and highlights the centrality of communication in the experiences of members of teams in the aftermath of a disaster. Utilising these new perspectives on stabilising communication at the interagency interfaces in disaster responses will have practical implications in the future to better serve the needs of vulnerable people who are at greatest risk of adverse outcomes in a disaster.
This thesis presents the findings from an experimental programme to determine the performance and behaviour of an integrated building incorporating low damage structural and non-structural systems. The systems investigated included post-tensioned rocking concrete frames, articulated floor solutions, low damage claddings and low damage partition systems. As part of a more general aim to increase the resilience of society against earthquake hazards, more emphasis has been given to damage-control design approaches in research. Multiple low-damage earthquake resistant structural and non-structural systems have emerged that are able to withstand high levels of drift or deflections will little or negligible residual. Dry jointed connections, articulated floor solutions, low damage cladding systems and low damage drywall partitions have all been developed separately and successfully tested. In spite of the extensive research effort and the adoption in practice of the low damage systems, work was required to integrate the systems within one building and verify the constructibility, behaviour and performance of the integrated systems. The objectives of this research were to perform dynamic experimental testing of a building which incorporated the low damage systems and acquire data which could be used to dynamically validate numerical models for each of the systems. A three phase experimental programme was devised and performed to dynamically test a half-scale two storey reinforced concrete building on the University of Canterbury shaking table. The three phases of the programme investigated: The structural system only. The rocking connections were tested as Post-Tensioned only connections and Hybrid connections (including dissipators). Two different articulated floor connections were also investigated. Non-structural systems. The Hybrid building was tested with each non-structural system separately; including low damage claddings, low damage partitions and traditional partitions. The Complete building was tested with Hybrid connections, low damage claddings and low damage partitions all integrated within the test specimen. The building was designed based on a full scale prototype building following the direct displacement based design to reach a peak inter-storey drift of 1.6% in a 1/500 year ground motion for a Wellington site. For each test set up, the test specimen was subjected to a ground motion sequence of 39 single direction ground motions. Through the sequence, both the local and global behaviours of the building and integrated systems were recorded in real time. The test specimen was subjected to over 400 ground motions throughout the testing programme. It sustained no significant damage that required reparations other than crumbling of the grout pads. The average peak inter-storey drifts of the buildings were lower than the design value of 1.6%. The low damage non-structural elements were undamaged in the ground motion sequence. The data acquired from each of the phases was used to successfully validate numerical models for each of the low damage systems included in the research.
Cats all over the world hunt wild animals and can contribute to the extinction of threatened species. In New Zealand, around half of all households have at least one cat. When cats live close to a natural area, such as a wetland, they may have impacts on native species. A previous study on the movements and hunting behaviour of domestic (house) cats around the Travis Wetland, Christchurch, New Zealand during 2000-2001 raised concerns about the effects of cats on the local skink population, as skinks were a frequent prey item. My study is a comparison to the prior study, to determine if impacts have changed alongside changes in human populations in the area post-earthquake. The domestic cat population in the area was estimated by a household survey in March-April 2018. For a 6 month period from March-September 2018, 26 households recorded prey brought home by their 41 cats. During April-July 2018, 14 cats wore Global Positioning System (GPS) devices for 7 days each to track their movements. Skink abundance was measured with pitfall trapping over 20 days in February 2018. There were more households in the area in 2018 than there were in 2000, but the numbers of cats had decreased. In the 196 ha study area around Travis Wetland, the domestic cat population was estimated at 429 cats, down from the previous 494. Most of the cats were free roaming, but the majority had been desexed and many were mostly seen at home. A total of 42 prey items were reported from 26 households and 41 cats over 6 months. Of these, 62% were rodents, 26% were exotic birds, and 12% were native birds. There were no native skinks, other mammals, or other vertebrates such as fish and amphibians (invertebrates were not included in this study). Eight male and six female cats were tracked by GPS. Home range sizes for the 100% minimum convex polygons (MCPs) ranged from 1.34 to 9.68 ha (mean 4.09 ha, median 3.54 ha). There were 9/14 (64%) cats that entered the edge of the wetland. Males had significantly larger home range areas at night and in general compared with females. However, age and distance of the cat’s household to the wetland did not have a significant effect on home range size and there was no significant correlation between home range size and prey retrieved. In 20 days of skink trapping, 11 Oligosoma polychroma were caught. The estimated catch rate was not significantly different from an earlier study on skink abundance in Travis Wetland. The apparently low abundance of skinks may have been the result of successful wetland restoration creating less suitable skink habitat, or of other predators other than cats. In the future, increased education should be provided to the public about ways to increase wildlife in their area. This includes creating lizard friendly habitat in their gardens and increasing management for cats. Generally, only a few cats bring home prey often, and these select cats should be identified in initial surveys and included in further studies. In New Zealand, until management programmes can target all predators in urban areas, domestic cats could stay out at night and inside during the day to help decrease the abundance of rodents at night and reduce the number of birds and lizards caught during the day.
Welcome to the Recover newsletter Issue 2 from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This second issue profiles some of the recent work done by our team out in the field!
Welcome to the first Recover newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Ecosystem Recovery). This first issue provides a summary of some of the big changes we’ve seen. In the next issue we’ll be profiling some of the current research as well as ways you can get involved!
Natural hazard reviews reveal increases in disaster impacts nowhere more pronounced than in coastal settlements. Despite efforts to enhance hazard resilience, the common trend remains to keep producing disaster prone places. This paper explicitly explores hazard versus multi-hazard concepts to illustrate how different conceptualizations can enhance or reduce settlement resilience. Understandings gained were combined with onthe-ground lessons from earthquake and flooding experiences to develop of a novel ‘first cut’ approach for analyzing key multi-hazard interconnections, and to evaluate resilience enhancing opportunities. Traditional disaster resilience efforts often consider different hazard types discretely. However, recent events in Christchurch, a New Zealand city that is part of the 100 Resilient Cities network, highlight the need to analyze the interrelated nature of different hazards, especially for enhancing lifelines system resilience. Our overview of the Christchurch case study demonstrates that seismic, hydrological, shallow-earth, and coastal hazards can be fundamentally interconnected, with catastrophic results where such interconnections go unrecognized. In response, we have begun to develop a simple approach for use by different stakeholders to support resilience planning, pre and post disaster, by: drawing attention to natural and built environment multi-hazard links in general; illustrating a ‘first cut’ tool for uncovering earthquake-flooding multi-hazard links in particular; and providing a basis for reviewing resilience strategy effectiveness in multi-hazard prone environments. This framework has particular application to tectonically active areas exposed to climate-change issues.
This paper explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the Februrary 22, 2011 earthquake, and while Lancaster Park sports stadium is still standing, it has been unused since that date and its future remains uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130 year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, post-disaster transitionality, and the im-permanence of place.
By closely examining the performance of a 22-storey steel framed building in Christchurch subject to various earthquakes over the past seven years, it is shown that a number of lessons can be learnt regarding the cost-effective consideration of non-structural elements. The first point in this work is that non-structural elements significantly affected the costs associated with repairing steel eccentrically braced frame (EBF) links. The decommissioning or rerouting of non-structural elements in the vicinity of damaged links in the case study building attributed to approximately half the total cost of their repair. Such costs could be significantly reduced if the original positioning of non-structural elements took account of the potential need to repair the EBF links. The second point highlighted is the role that pre-cast cladding apparently played on the distribution and type of damage in the building. Loss estimates obtained following the FEMA P-58 framework vary considerably when cladding is or isnt modelled, both because of changes to drift demands up the height of the building and because certain types of subsequent damage are likely to be cheaper to repair than others. Finally, costly repairs to non-structural partition walls were required not only after the moment magnitude 7.1 earthquake in 2010 but also in multiple aftershocks in the years that followed. Repair costs associated with aftershock events exceeded those from the main event, emphasizing the need to consider aftershocks within modern performance-based earthquake engineering and also the opportunity that exists to make more cost-effective repair strategies following damaging earthquakes.
Observations made in past earthquakes, in New Zealand and around the world, have highlighted the vulnerability of non-structural elements such as facades, ceilings, partitions and services. Damage to these elements can be life-threatening or jeopardise egress routes but typically, the main concern is the cost and time associated with repair works. The Insurance Council of New Zealand highlighted the substantial economic losses in recent earthquakes due to poor performance of non-structural elements. Previous inspections and research have attributed the damage to non-structural elements principally to poor coordination, inadequate or lack of seismic restraints and insufficient clearances to cater for seismic actions. Secondary issues of design responsibility, procurement and the need for better alignment of the various Standards have been identified. In addition to the compliance issues, researchers have also demonstrated that current code provisions for non-structural elements, both in New Zealand and abroad, may be inadequate. This paper first reviews the damage observed against the requirements of relevant Standards and the New Zealand Building Code, and it appears that, had the installations been compliant, the cost of repair and business interruption would have been substantially less. The second part of the paper highlights some of the apparent shortcomings with the current design process for non-structural elements, points towards possible alternative strategies and identifies areas where more research is deemed necessary. The challenge of improving the seismic performance of non-structural elements is a complex one across a diverse construction industry. Indications are that the New Zealand construction industry needs to completely rethink the delivery approach to ensure an integrated design, construction and certification process. The industry, QuakeCentre, QuakeCoRE and the University of Canterbury are presently working together to progress solutions. Indications are that if new processes can be initiated, better performance during earthquakes will be achieved while delivering enhanced building and business resilience.
La pericolosità associata ad un dato fenomeno costituisce uno dei fattori più importanti e difficili da quantificare nelle analisi di rischio, a maggior ragione quando si tratta di fenomeni complessi come nel caso della liquefazione sismica. Il presente lavoro illustra sinteticamente uno studio della pericolosità indotta al suolo da liquefazione basato su un caso campione statistico particolarmente significativo, il terremoto (Mw 6.2) che ha colpito Christchurch, Nuova Zelanda, del 2011. La notevole mole di dati disponibili, relativi alle caratteristiche geotecniche del sottosuolo, unitamente al rilievo dei danni ha consentito innanzitutto di caratterizzare la suscettibilità a liquefazione dell’area, indipendentemente dall’evento sismico, quindi di correlare statisticamente le diverse grandezze e di derivare delle curve di vulnerabilità del suolo.
None
The article asks whether disasters that destroy life but leave the material infrastructure relatively intact tend to prompt communal coping focussing on loss, while disasters that destroy significant material infrastructure tend to prompt coping through restoration / re-building. After comparing memorials to New Zealand’s Christchurch earthquake and Pike River mine disasters, we outline circumstances in which collective restorative endeavour may be grassroots, organised from above, or manipulated, along with limits to effective restoration. We conclude that bereavement literature may need to take restoration more seriously, while disaster literature may need to take loss more seriously.
This research examines the connection between accessibility and resilience in post-earthquake Christchurch. This research will provide my community partner with a useful evidence base to help show that increased accessibility does create a more resilient environment. This research uses an in-depth literature review along with qualitative interview approach discussing current levels of accessibility and resilience in Christchurch and whether or not the interview participants believe that increased accessibility in Christchurch will make our city more resilient to future disasters. This research is important because it helps to bridge the connection between accessibility and resilience by showing how accessibility is an important aspect of making a city resilient. In Christchurch specifically, it is a great time to create an accessible and inclusive environment in the post-earthquake rebuild state the city is currently in. Showing that an accessible environment will lead to a more resilient city is important will potentially lead to accessible design being included in the rebuild of places and spaces in Christchurch. In theory, the results of this research show that having an accessible environment leads to universal inclusiveness which in turn, leads to a resilient city. An overarching theme that arose during this research is that accessibility is a means to inclusion and without inclusion a society cannot be resilient. In practice, the results show that for Christchurch to become more accessible and inclusive for people with disabilities, there needs to not only be an increase the accessibility of places and spaces but accessibility to the community as well. Having accessible infrastructure and communities will lead to increased social and urban resilience, especially for individuals with disabilities. This research is beneficial because it helps to bridge the connection between accessibility and resilience. Resilience is important because it help cities prepare for, respond to and recover from disasters and this research helps to show that accessibility is an important part of creating resilience. Some questions still remain unresolved mainly looking into normalising accessibility and deciphering how to prove that accessibility is an issue that effects everybody, not just individuals with disabilities.
This thesis explores the discussions and perspectives of Christchurch secondary school students in regards to their particular experiences and engagement with Anzac. In this thesis I seek to rigorously and robustly examine these viewpoints through semi-structured focus group interviews and thematic analysis. I seek to situate these youth perspectives within wider debates around Anzac mythology and Anzac resurgence in New Zealand which often do not represent the youth outlook. These debates are seen, on the one hand, to present a resurgence of youth engagement with Anzac and, on the other hand, to present the idea that Anzac has become an exclusionary myth which distorts Australians’ and New Zealanders’ understanding of wider Anzac experiences and educates them in a narrow, militarised way. Youth engagement with Anzac was not something which could be solely situated under either of these debates and, instead, it was seen to be multifaceted and made up of unique ideas and elements. The youth in my study acknowledged that their Anzac education did have mythic elements which made it hard for them to engage with Anzac despite the fact that they were actually interested in learning and understanding it. These mythic elements were the idea that Anzac is taught as a ‘simple narrative’ which does not allow room for critique, that it emphasises a link between Anzac and national identity, that it disregards many alternative Anzac experiences and that it presents a particular New Zealand identity to internalise. These students responded to their mythic Anzac education in a very active way, and instead of accepting it as truth, they were able to have constructive and critical conversations about their education and push against parts of it which they found to be too narrow or skewed in particular directions based on gender, ethnicity and national identity. The students were not passive vessels which internalised their Anzac education as fact; instead, they were able to acknowledge the mythic elements of their education and its negative influence in the classroom. This thesis went further in exploring what factors were seen to enhance this active process of critique and provide students with alternative knowledge and perspectives about Anzac. These factors were ancestral ties to Anzac, research into personal Anzac stories and experiences, unassessed educational units, centenary discussions, an understanding of hardship through the earthquakes and alternative perspectives of the Anzac experience through access to the internet. These factors presented a broader understanding of Anzac perspectives and experiences and students believed that if the mythic elements of their education could be revised and these elements encouraged then their engagement with Anzac would continue long into the future.
Disasters that significantly affect people typically result in the production of documents detailing disaster lessons. This was the case in the 2010 and 2011 Canterbury earthquakes, as government and emergency response agencies, community organisations, and the media, engaged in the practice of producing and reporting disaster lessons. This thesis examines the disaster lessons that were developed by emergent groups following the Canterbury earthquakes (4 September 2010 and 22 February 2011). It adopts a Foucauldian analysis approach to investigate both the construction of disaster lessons and to document how this practice has come to dominate postdisaster activity following the Canterbury earthquakes. The study involved an analysis of academic literature, public documents and websites and interviews with key members of a range of Canterbury based emergent community groups. This material was used to generate a genealogy of disaster lessons, which was given in order to generate an account of how disaster lessons emerged and have come to dominate as a practice of disaster management. The thesis then examines the genealogy through the concept of governmentality so as to demonstrate how this discourse of disaster lessons has come to be used as a governing rationale that shapes and guides the emergent groups conduct in postdisaster New Zealand.
Smart cities utilise new and innovative technology to improve the function of the city for governments, citizens and businesses. This thesis offers an in-depth discussion on the concept of the smart city and sets the context of smart cities internationally. It also examines how to improve a smart city through public engagement, as well as, how to implement participatory research in a smart city project to improve the level of engagement of citizens in the planning and implementation of smart projects. This thesis shows how to incentivise behaviour change with smart city technology and projects, through increasing participation in the planning and implementation of smart technology in a city. Meaningful data is created through this process of participation for citizens in the city, by engaging the citizens in the creation of the data, therefore the information created through a smart city project is created by and for the citizens themselves. To improve engagement, a city must understand its specific context and its residents. Using Christchurch, New Zealand, and the Christchurch City Council (CCC) Smart City Project as a case study, this research engages CCC stakeholders in the Smart City Project through a series of interviews, and citizens in Christchurch through a survey and focus groups. A thorough literature review has been conducted, to illuminate the different definitions of the smart city in academia, business and governments respectively, and how these definitions vary from one another. It provides details of a carefully selected set of relevant smart cities internationally and will discuss how the Christchurch Earthquake Sequence of 2010 and 2011 has affected the CCC Smart City Project. The research process, alongside the literature review, shows diverse groups of citizens in the city should be acknowledged in this process. The concept of the smart city is redefined to incorporate the context of Christchurch, its citizens and communities. Community perceptions of smart cities in Christchurch consider the post-disaster environment and this event and subsequent rebuild process should be a focus of the smart city project. The research identified that the CCC needs to focus on participatory approaches in the planning and implementation of smart projects, and community organisations in Christchurch offer an opportunity to understand community perspectives on new smart technology and that projects internationally should consider how the context of the city will affect the participation of its residents. This project offers ideas to influence the behaviour change of citizens through a smart city project. Further research should consider other stakeholders, for instance, innovation and technology-focused business in the city, and to fully engage citizens, future research must continue the process of participatory engagement, and target diverse groups in the city, including but not limited to minority groups, older and younger generations, and those with physical and mental disabilities.
The Leader Fault was one of at least 17 faults that ruptured the ground surface across the northeastern South Island of New Zealand during the Mw 7.8 2016 Kaikōura Earthquake. The southern ~6 km of the Leader Fault, here referred to as the South Leader Fault (SLF), ruptured the North Canterbury (tectonic) Domain and is the primary focus of this study. The main objective of the thesis is to understand the key factors that contributed to the geometry and kinematics of the 2016 SLF rupture and its intersection with The Humps Fault (HF). This thesis employs a combination of techniques to achieve the primary objective, including detailed mapping of the bedrock geology, geomorphology and 2016 rupture, measurement of 2016 ground surface displacements, kinematic analysis of slip vectors from the earthquake, and logging of a single natural exposure across a 2016 rupture that was treated as a paleoseismic trench. The resulting datasets were collected in the field, from terrestrial LiDAR and InSAR imagery, and from historical (pre-earthquake) aerial photographs for a ~11 km2 study area. Surface ruptures in the study area are a miniature version of the entire rupture from the earthquake; they are geometrically and kinematically complex, with many individual and discontinuous segments of varying orientations and slip senses which are distributed across a zone up to ~3.5 km wide. Despite this variability, three main groups of ruptures have been identified. These are: 1) NE-SW striking, shallow to moderate dipping (25-45°W) faults that are approximately parallel to Cenozoic bedding with mainly reverse dip-slip and, and for the purposes of this thesis, are considered to be part of the SLF. 2) N-S striking, steeply dipping (~85°E) oblique sinistral faults that are up to the west and part of the SLF. 3) E-NE striking, moderate to steeply dipping (45-68°N) dextral reverse faults which are part of the HF. Bedding-parallel faults are interpreted to be flexural slip structures formed during folding of the near-surface Cenozoic strata, while the steeply dipping SLF ruptured a pre-existing bedrock fault which has little topographic expression. Groups 1 and 2 faults were both locally used for gravitational failure during the earthquake. Despite this non-tectonic fault movement, the slip vectors for faults that ruptured during the earthquake are broadly consistent with NCD tectonics and the regional ~100-120° trend of the principal horizontal stress/strain axes. Previous earthquake activity on the SLF is required by its displacement of Cenozoic formations but Late Quaternary slip on the fault prior to 2016 is neither supported by pre-existing fault scarps nor by changes in topography across the fault. By contrast, at least two earthquakes (including 2016) appear to have ruptured the HF from the mid Holocene, consistent with recurrence intervals of no more than ~7 kyr, and with preliminary observations from trenches on the fault farther to the west. The disparity in paleoearthquake records of the two faults suggests that they typically do not rupture together, thus it is concluded that the HF-SLF rupture pattern observed in the Kaikōura Earthquake rarely occurs in a single earthquake.
The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.
Over 900 buildings in the Christchurch central business district and 10,000 residential homes were demolished following the 22nd of February 2011 Canterbury earthquake, significantly disrupting the rebuild progress. This study looks to quantify the time required for demolitions during this event which will be useful for future earthquake recovery planning. This was done using the Canterbury Earthquake Recovery Authority (CERA) demolition database, which allowed an in-depth look into the duration of each phase of the demolition process. The effect of building location, building height, and the stakeholder which initiated the demolition process (i.e. building owner or CERA) was investigated. The demolition process comprises of five phases; (i) decision making, (ii) procurement and planning, (iii) demolition, (iv) site clean-up, and (v) completion certification. It was found that the time required to decide to demolish the building made up majority of the total demolition duration. Demolition projects initiated by CERA had longer procurement and planning durations, but was quicker in other phases. Demolished buildings in the suburbs had a longer decision making duration, but had little effect on other phases of the demolition process. The decision making and procurement and planning phases of the demolition process were shorter for taller buildings, though the other phases took longer. Fragility functions for the duration of each phase in the demolition process are provided for the various categories of buildings for use in future studies.