Search

found 905 results

Research papers, University of Canterbury Library

During the past two decades, the focus has been on the need to provide communities with structures that undergo minimal damage after an earthquake event while still being cost competitive. This has led to the development of high performance seismic resisting systems, and advances in design methodologies, in order respect this demand efficiently. This paper presents the experimental response of four pre-cast, post-tensioned rocking wall systems tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building, but are equally applicable for use in new design. Design of the wall followed a performance-based retrofit strategy in which structural limit states appropriate to both the post-tensioned wall and the existing building were considered. Dissipation for each of the four post-tensioned walls was provided via externally mounted devices, located in parallel to post-tensioned tendons for re-centring. This allowed the dissipation devices to be easily replaced or inspected following a major earthquake. Each wall was installed with viscous fluid dampers, tension-compression yielding steel dampers, a combination of both or no devices at all – thus relying on contact damping alone. The effectiveness of both velocity and displacement dependant dissipation are investigated for protection against far-field and velocity-pulse ground motion characteristics. The experimental results validate the behaviour of ‘Advanced Flag-Shape’ rocking, dissipating solutions which have been recently proposed and numerically tested. Maximum displacements and material strains were well controlled and within acceptable bounds, and residual deformations were minimal due to the re-centring contribution from the post-tensioned tendons. Damage was confined to inelastic yielding (or fluid damping) of the external dampers.

Research papers, University of Canterbury Library

It is fast becoming common practice for civil engineering infrastructure and building structures to be designed to achieve a set of performance objectives. To do so, consideration is now being given to systems capable of sustaining minimal damage after an earthquake while still being cost competitive. This has led to the development of high performance seismic resisting systems, followed by advances in design methodologies. The paper presents the experimental response of four pre-cast, post-tensioned rocking walls with high-performing dissipating solutions tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building however, can also be used for the design of new, high-performance structures. The use of externally mounted dampers allowed numerous dissipation schemes to be explored including mild-steel dampers (hysteretic dampers), viscous dampers, a combination of both or no dampers. The advantages of both velocity and displacement dependant dissipation was investigated for protection against strong ground motions with differing rupture characteristics i.e. far-field and near-field events. The experimental results are used to verify a proposed design procedure for post-tensioned rocking systems with supplementary hysteretic and viscous dissipation. The predicted response compared well with the measured shake-table response.

Research papers, University of Canterbury Library

This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.

Research papers, University of Canterbury Library

Liquefaction of sandy soil has been observed to cause significant damage to infrastructure during major earthquakes. Historical cases of liquefaction have typically occurred in sands containing some portion of fines particles, which are defined as 75μm or smaller in diameter. The effects of fines on the undrained behaviour of sand are not however fully understood, and this study therefore attempts to quantify these effects through the undrained testing of sand mixed with non-plastic fines sourced from Christchurch, New Zealand. The experimental program carried out during this study consisted of undrained monotonic and cyclic triaxial tests performed on three different mixtures of sand and fines: the Fitzgerald Bridge mixture (FBM), and two Pinnacles Sand mixtures (PSM1 and PSM2). The fines content of each host sand was systematically varied up to a maximum of 30%, with all test specimens being reconstituted using moist tamping deposition. The undrained test results from the FBM soils were interpreted using a range of different measures of initial state. When using void ratio and relative density, the addition of fines to the FBM sand caused more contractive behaviour for both monotonic and cyclic loadings. This resulted in lower strengths at the steady state of deformation, and lower liquefaction resistances. When the intergranular void ratio was used for the interpretation, the effect of additional fines was to cause less contractive response in the sand. The state parameter and state index were also used to interpret the undrained cyclic test results – these measures suggested that additional fines caused less contractive sand behaviour, the opposite to that observed when using the void ratio. This highlighted the dependency on the parameter chosen as a basis for the response comparison when determining the effects of fines, and pointed out a need to identify a measure that normalizes such effects. Based on the FBM undrained test results and interpretations, the equivalent granular void ratio, e*, was identified from the literature as a measure of initial state that normalizes the effects of fines on the undrained behaviour of sand up to a fines content of 30%. This is done through a parameter within the e* definition termed the fines influence factor, b, which quantifies the effects of fines from a value of zero (no effect) to one (same effect as sand particles). The value of b was also determined to be different when interpreting the steady state lines (bSSL) and cyclic resistance curves (bCR) respectively for a given mixture of sand and fines. The steady state lines and cyclic resistance curves of the FBM soils and a number of other sand-fines mixtures sourced from the literature were subsequently interpreted using the equivalent granular void ratio concept, with bSSL and bCR values being back-calculated from the respective test data sets. Based on these interpretations, it was concluded that e* was conceptually a useful parameter for characterizing and quantifying the effects of fines on the undrained behaviour of sand, assuming the fines influence factor value could be derived. To allow prediction of the fines influence factor values, bSSL and bCR were correlated with material and depositional properties of the presented sand-fines mixtures. It was found that as the size of the fines particles relative to the sand particles became smaller, the values of bSSL and bCR reduced, indicating lower effect of fines. The same trend was also observed as the angularity of the sand particles increased. The depositional method was found to influence the value of bCR, due to the sensitivity of cyclic loading to initial soil fabric. This led to bSSL being used as a reference for the effect of fines, with specimens prepared by moist tamping having bCR > bSSL, and specimens prepared by slurry deposition having bCR < bSSL. Finally the correlations of the fines influence factor values with material and depositional properties were used to define the simplified estimation method – a procedure capable of predicting the approximate steady state lines and cyclic resistance curves of a sand as the non-plastic fines content is increased up to 30%. The method was critically reviewed based on the undrained test results of the PSM1 and PSM2 soils. This review suggested the method could accurately predict undrained response curves as the fines content was raised, based on the PSM1 test results. It also however identified some key issues with the method, such as the inability to accurately predict the responses of highly non-uniform soils, a lack of consideration for the entire particle size distribution of a soil, and the fact the errors in the prediction of bSSL carry through into the prediction of bCR. Lastly some areas of further investigation relating to the method were highlighted, including the need to verify the method through testing of sandy soils sourced from outside the Christchurch area, and the need to correlate the value of bCR with additional soil fabrics / depositional methods.

Research papers, University of Canterbury Library

The development of cheap, whilst effective and relatively non-invasive structural retrofit techniques for existing non-ductile reinforced concrete (RC) structures still remains the most challenging issue for a wide implementation on a macro scale. Seismic retrofit is too often being confused as purely structural strengthening. As part of a six-years national project on “Seismic retrofit solutions for NZ multi-storey building”, focus has been given at the University of Canterbury on the development of a counter-intuitive retrofit strategy for earthquake vulnerable existing rc frame, based on a “selective weakening” (SW) approach. After an overview of the SW concept, this paper presents the experimental and numerical validation of a SW retrofit strategy for earthquake vulnerable existing RC frame with particular focus on the exterior beam-column (b-c) joints. The exterior b-c joint is a critically vulnerable region in many existing pre-1970s RC frames. By selectively weakening the beam by cutting the bottom longitudinal reinforcements and/or adding external pre-stressing to the b-c joint, a more desirable inelastic mechanism can be attained, leading to improved global seismic performance. The so-called SW retrofit is implemented on four 2/3-scaled exterior RC b-c joint subassemblies, tested under quasi-static cyclic loading at the University of Canterbury. Complemented by refined 3D Finite Element (FE) models and dynamic time-history analyses results, the experimental results have shown the potential of a simple and cost-effective yet structurally efficient structural rehabilitation technique. The research also demonstrated the potential of advanced 3D fracture-mechanics-based microplane concrete modelling for refined FE analysis of non-ductile RC b-c joints.

Research papers, University of Canterbury Library

The QuakeCoRE Emerging Researchers Chapter (QERC) is a network of students and emerging researchers composed of three chapters: Auckland, Canterbury, and Wellington. Our aim is to promote networking, collaboration, and knowledge sharing among emerging researchers in the earthquake resilience community. QERC does this by organising technical, social, and outreach events. As with everyone else during the pandemic crisis, QERC had to change its approach in organising events. However, instead of treating it as an obstacle, QERC utilised the lockdown period as an opportunity to connect the three chapters and organised more events than they usually would during normal times. In the 11 weeks that universities were closed and New Zealand was under Alert Levels 2, 3 and 4, QERC organised 15 various events such as research presentations, well-being workshops, a women's catch-up, and a trivia night. However, as the weeks went by, the novelty of online meetings faded and fewer people came to the virtual events. Therefore as soon as the country moved to Alert Level 1, the Chapters started organising in-person events, which members were eager to attend. Nonetheless, the option to join events remotely still remains and the three chapters continue to collaborate for various events.

Research papers, University of Canterbury Library

This study analyses the success and limitations of the recovery process following the 2010–11 earthquake sequence in Christchurch, New Zealand. Data were obtained from in-depth interviews with 32 relocated households in Christchurch, and from a review of recovery policies implemented by the government. A top-down approach to disaster recovery was evident, with the creation of multiple government agencies and processes that made grassroots input into decision-making difficult. Although insurance proceeds enabled the repair and rebuilding of many dwellings, the complexity and adversarial nature of the claim procedures also impaired recovery. Householders’ perceptions of recovery reflected key aspects of their post-earthquake experiences (e.g. the housing offer they received, and the negotiations involved), and the outcomes of their relocation (including the value of the new home, their subjective well-being, and lifestyle after relocation). Protracted insurance negotiations, unfair offers and hardships in post-earthquake life were major challenges to recovery. Less-thanfavourable recovery experiences also transformed patterns of trust in local communities, as relocated householders came to doubt both the government and private insurance companies’ ability to successfully manage a disaster. At the same time, many relocated households expressed trust in their neighbours and communities. This study illuminates how government policies influence disaster recovery while also suggesting a need to reconsider centralised, top-down approaches to managing recovery.

Research papers, University of Canterbury Library

This document reviews research-based understandings of the concept of resilience. A conceptual model is developed which identifies a number of the factors that influence individual and household resilience. Guided by the model, a series of recommendations are developed for practices that will support individual and household resilience in Canterbury in the aftermath of the 2010-2011 earthquakes.

Research papers, University of Canterbury Library

In recent years, rocking isolation has become an effective approach to improve seismic performance of steel and reinforced concrete structures. These systems can mitigate structural damage through rigid body displacement and thus relatively low requirements for structural ductility, which can significantly improve seismic resilience of structures and reduce repairing costs after strong earthquakes. A number of base rocking structural systems with only a single rocking interface have been proposed. However, these systems can have significant high mode effect for high rise structures due to the single rocking interface. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. A number of structural configurations will be tested [1, 2], and non-structural elements including ceilings, infilling walls, glazed curtain walls, precast concrete panels, piping system will also be tested in this project [3]. Within this study, a multiple rocking column steel structural system was proposed and investigated mainly by Tongji team with assistance of NZ members. The concept of rocking column system initiates from the structure of Chinese ancient wooden pagoda. In some of Chinese wooden pagodas, there are continuous core columns hanged only at the top of each pagoda, which is not connected to each stories. This core column can effectively avoid collapse of the whole structure under large storey drifts. Likewise, there are also central continuous columns in the newly proposed steel rocking column system, which can avoid weak story failure mechanism and make story drifts more uniform. In the proposed rocking column system, the structure can switch between an elastic rigidly connected moment resisting frame and a controlled rocking column system when subjected to strong ground motion excitations. The main seismic energy can be dissipated by asymmetric friction beam–column connections, thereby effectively reducing residual displacement of the structure under seismic loading without causing excessive damage to structural members. Re–centering of the structure is provided not only by gravity load carried by rocking columns, but also by mould coil springs. To investigate dynamic properties of the proposed system under different levels of ground excitations, a full-scale threestory steel rocking column structural system with central continuous columns is to be tested using the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China and an analytical model is established. A finite element model is also developed using ABAQUS to simulate the structural dynamic responses. The rocking column system proposed in this paper is shown to produce resilient design with quick repair or replacement.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility of light-weight buildings to movement under high-wind loading. The 1994 Northridge Earthquake (6.7 MW) in the United States, 1995 Kobe Earthquake (6.9 MW) in Japan and 2011 Christchurch Earthquake (6.7 Mw) all highlighted significant loss to light-frame wood buildings with over half of earthquake recovery costs allocated to their repair and reconstruction. This poster presents a value case to highlight the benefits of seismically isolated residential buildings compared to the standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used to determine vulnerability functions for the current light-frame wood building stock. By using a simplified single degree of freedom (SDOF) building model, methods for determining vulnerability functions for seismic isolated buildings are developed. Vulnerability functions are then applied directly in a loss assessment to determine the Expected Annual Loss. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building resulting in significant monetary savings, justifying the value case. A state-of-the-art timber modelling software, Timber3D, is then used to model a typical residential building with and without seismic isolation to assess the performance of a proposed seismic isolation system which addresses the technical and cost issues.

Research papers, University of Canterbury Library

Post-earthquake cordons have been used after seismic events around the world. However, there is limited understanding of cordons and how contextual information of place such as geography, socio-cultural characteristics, economy, institutional and governance structure etc. affect decisions, operational procedures as well as spatial and temporal attributes of cordon establishment. This research aims to fill that gap through a qualitative comparative case study of two cities: Christchurch, New Zealand (Mw 6.2 earthquake, February 2011) and L’Aquila, Italy (Mw 6.3 earthquake, 2009). Both cities suffered comprehensive damage to its city centre and had cordons established for extended period. Data collection was done through purposive and snowball sampling methods whereby 23 key informants were interviewed in total. The interviewee varied in their roles and responsibilities i.e. council members, emergency managers, politicians, business/insurance representatives etc. We found that cordons were established to ensure safety of people and to maintain security of place in both the sites. In both cities, the extended cordon was met with resistance and protests. The extent and duration of establishment of cordon was affected by recovery approach taken in the two cities i.e. in Christchurch demolition was widely done to support recovery allowing for faster removal of cordons where as in L’Aquila, due to its historical importance, the approach to recovery was based on saving all the buildings which extended the duration of cordon. Thus, cordons are affected by site specific needs. It should be removed as soon as practicable which could be made easier with preplanning of cordons.

Research papers, University of Canterbury Library

Abstract. Natural (e.g., earthquake, flood, wildfires) and human-made (e.g., terrorism, civil strife) disasters are inevitable, can cause extensive disruption, and produce chronic and disabling psychological injuries leading to formal diagnoses (e.g., post-traumatic stress disorder [PTSD]). Following natural disasters of earthquake (Christchurch, Aotearoa/New Zealand, 2010–11) and flood (Calgary, Canada, 2013), controlled research showed statistically and clinically significant reductions in psychological distress for survivors who consumed minerals and vitamins (micronutrients) in the following months. Following a mass shooting in Christchurch (March 15, 2019), where a gunman entered mosques during Friday prayers and killed and injured many people, micronutrients were offered to survivors as a clinical service based on translational science principles and adapted to be culturally appropriate. In this first translational science study in the area of nutrition and disasters, clinical results were reported for 24 clients who completed the Impact of Event Scale – Revised (IES-R), the Depression Anxiety Stress Scales (DASS), and the Modified-Clinical Global Impression (M-CGI-I). The findings clearly replicated prior controlled research. The IES-R Cohen’s d ESs were 1.1 (earthquake), 1.2 (flood), and 1.13 (massacre). Effect sizes (ESs) for the DASS subscales were also consistently positive across all three events. The M-CGI-I identified 58% of the survivors as “responders” (i.e., self-reported as “much” to “very much” improved), in line with those reported in the earthquake (42%) and flood (57%) randomized controlled trials, and PTSD risk reduced from 75% to 17%. Given ease of use and large ESs, this evidence supports the routine use of micronutrients by disaster survivors as part of governmental response.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 4 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 4th instalment covers recent work on seaweed recovery in the subtidal zone, ecological engineering in Waikoau / Lyell Creek, and a sneak preview of drone survey results!

Research papers, University of Canterbury Library

Earthquakes cause significant damage to buildings due to strong vibration of the ground. Levitating houses using magnets and electromagnets would provide a complete isolation of ground motion for protecting buildings from seismic damage. Two types of initial configuration for the electromagnet system were proposed with the same air gap (10mm) between the electromagnet and reluctance plate. Both active and passive controller are modelled to investigate the feasibility of using a vibration control system for stabilizing the magnetic system within the designed air gap (10mm) in the vertical direction. A nonlinear model for the magnetic system is derived to implement numerical simulation of structural response under the earthquake record in Christchurch Botanic Gardens on 21 February 2011. The performance of the uncontrolled and the controlled systems are compared and the optimal combination of control gains are determined for the PID active controller. Simulation results show both active PID controller with constant and nonlinear attracting force are able to provide an effective displacement control within the required air gap (+/-5mm). The maximum control force demand for the PID controller in the presence of nonlinear attracting force is 4.1kN, while the attracting force in equilibrium position is 10kN provided by the electromagnet. These results show the feasibility of levitating a house using the current electromagnet and PID controller. Finally, initial results of passive control using two permanent magnets or dampers show the structural responses can be effectively reduced and centralized to +/-1mm using a nonlinear centring barrier function.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of topics in the physics-based broadband ground motion simulation, with a focus on New Zealand applications. In particular the following topics are addressed: the methodology and computational implementation of a New Zealand Velocity Model for broadband ground motion simulation; generalised parametric functions and spatial correlations for seismic velocities in the Canterbury, New Zealand region from surface-wave-based site characterisation; and ground motion simulations of Hope Fault earthquakes. The paragraphs below outline each contribution in more detail. A necessary component in physics-based ground motion simulation is a 3D model which details the seismic velocities in the region of interest. Here a velocity model construction methodology, its computational implementation, and application in the construction of a New Zealand velocity model for use in physics-based broadband ground motion simulation are presented. The methodology utilises multiple datasets spanning different length scales, which is enabled via the use of modular sub-regions, geologic surfaces, and parametric representations of crustal velocity. A number of efficiency-related workflows to decrease the overall computational construction time are employed, while maintaining the flexibility and extensibility to incorporate additional datasets and re- fined velocity parameterizations as they become available. The model comprises explicit representations of the Canterbury, Wellington, Nelson-Tasman, Kaikoura, Marlborough, Waiau, Hanmer and Cheviot sedimentary basins embedded within a regional travel-time tomography-based velocity model for the shallow crust and provides the means to conduct ground motion simulations throughout New Zealand for the first time. Recently developed deep shear-wave velocity profiles in Canterbury enabled models that better characterise the velocity structure within geologic layers of the Canterbury sedimentary basin to be developed. Here the development of depth- and Vs30-dependent para-metric velocity and spatial correlation models to characterise shear-wave velocities within the geologic layers of the Canterbury sedimentary basin are presented. The models utilise data from 22 shear-wave velocity profiles of up to 2.5km depth (derived from surface wave analysis) juxtaposed with models which detail the three-dimensional structure of the geologic formations in the Canterbury sedimentary basin. Parametric velocity equations are presented for Fine Grained Sediments, Gravels, and Tertiary layer groupings. Spatial correlations were developed and applied to generate three-dimensional stochastic velocity perturbations. Collectively, these models enable seismic velocities to be realistically represented for applications such as 3D ground motion and site response simulations. Lastly the New Zealand velocity model is applied to simulate ground motions for a Mw7.51 rupture of the Hope Fault using a physics-based simulation methodology and a 3D crustal velocity model of New Zealand. The simulation methodology was validated for use in the region through comparison with observations for a suite of historic small magnitude earthquakes located proximal to the Hope Fault. Simulations are compared with conventionally utilised empirical ground motion models, with simulated peak ground velocities being notably higher in regions with modelled sedimentary basins. A sensitivity analysis was undertaken where the source characteristics of magnitude, stress parameter, hypocentre location and kinematic slip distribution were varied and an analysis of their effect on ground motion intensities is presented. It was found that the magnitude and stress parameter strongly influenced long and short period ground motion amplitudes, respectively. Ground motion intensities for the Hope Fault scenario are compared with the 2016 Kaikoura Mw7.8 earthquake, it was found that the Kaikoura earthquake produced stronger motions along the eastern South Island, while the Hope Fault scenario resulted in stronger motions immediately West of the near-fault region. The simulated ground motions for this scenario complement prior empirically-based estimates and are informative for mitigation and emergency planning purposes.

Research papers, University of Canterbury Library

The earthquake engineering community is currently grappling with the need to improve the post-earthquake reparability of buildings. As part of this, proposals exist to change design criteria for the serviceability limit state (SLS). This paper reviews options for change and considers how these could impact the expected repair costs for typical New Zealand buildings. The expected annual loss (EAL) is selected as a relevant measure or repair costs and performance because (i) EAL provides information on the performance of a building considering a range of intensity levels, (ii) the insurance industry refers to EAL when setting premiums, and (iii) monetary losses are likely to be correlated with loss of building functionality. The paper argues that because the expected annual loss is affected by building performance over a range of intensity levels, the definition of SLS criteria alone may be insufficient to effectively limit losses. However, it is also explained that losses could be limited effectively if the loadings standard were to set the SLS design intensity considering the potential implications on EAL. It is shown that in order to achieve similar values of EAL in Wellington and Christchurch, the return period intensity for SLS design would need to be higher in Christchurch owing to differences in local hazard conditions. The observations made herein are based on a simplified procedure for EAL estimation and hence future research should aim to verify the findings using a detailed loss assessment approach applied to a broad range of case study buildings.

Research papers, University of Canterbury Library

New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance which aligns with New Zealand design codes requirements. However, poor performance was reported in terms of their seismic resilience that can be generally associated with community demands. Future expectations of the seismic performance of wooden-framed houses by homeowners were assessed in this research. Homeowners in the Wellington region were asked in a survey about the levels of safety and expected possible damage in their houses after a seismic event. Findings bring questions about whether New Zealand code requirements are good enough to satisfy community demands. Also, questions whether available information of strengthening techniques to structurally prepare wooden-framed houses to face future major earthquakes can help to make homeowners feel safer at home during major seismic events.

Research papers, University of Canterbury Library

This report contributes to a collaborative project between the Marlborough District Council (MDC) and University of Canterbury (UC) which aims to help protect and promote the recovery of native dune systems on the Marlborough coast. It is centred around the mapping of dune vegetation and identification of dune protection zones for old-growth seed sources of the native sand-binders spinifex (Spinifex sericeus) and pīngao (Ficinia spiralis). Both are key habitat-formers associated with nationally threatened dune ecosystems, and pīngao is an important weaving resource and Ngāi Tahu taonga species. The primary goal is to protect existing seed sources that are vital for natural regeneration following major disturbances such as the earthquake event. Several additional protection zones are also identified for areas where new dunes are successfully regenerating, including areas being actively restored in the Beach Aid project that is assisting new native dunes to become established where there is available space.

Research papers, University of Canterbury Library

The Canterbury earthquakes, which started with the 7.1 magnitude event on September 4, 2010, caused significant damage in the region. The September 4 earthquakes brought substantial damage to land, buildings, and infrastructure, while the 6.3 magnitude earthquake on February 22, 2011 (and its subsequent aftershocks), brought even greater property damage, but also significant loss of life in addition to the region. Thousands were injured, and 185 persons died. A national State of Emergency was declared and remained in effect until April 30, 2011. A significant number of people required immediate assistance and support to deal with loss, injury, trauma experiences, and property damages. Many had to find alternate accommodation as their houses were too damaged to stay in. Of those affected, many were already vulnerable, and others had been too traumatized by the events to effectively deal with the challenges they were faced with. A number of human service organizations in the region, from both government and non-government sectors, joined forces to be able to more effectively and efficiently help those in need. This was the start of what would become known as the Earthquake Support Coordination Service. The aim of this report is to present an evaluation of the Earthquake Support Coordination Service and its collaborative organization, based on documentation and interviews with key stakeholders of the service. The aim is also to evaluate the service based on perspectives gathered among the clients as well as the coordinators working in the service. The final aim is to offer a reflection on the service model, and on what factors enabled the service, as well as recommendations regarding aspects of the service which may require review, and aspects which may be useful in other contexts.

Research papers, University of Canterbury Library

There has been little discussion of what archival accounting evidence can contribute to an understanding of a society’s response to a natural disaster. This article focuses on two severe earthquakes which struck New Zealand in 1929 and 1931 and makes two main contributions to accounting history. First, by discussing evidence from archival sources, it contributes to the literature on accounting in a disaster. This provides a basis for future theory building and for future comparative research related to the response to more recent natural disasters such as the 2010–11 Canterbury earthquakes. Secondly, it questions the conclusions of recently published research concerning the role of central and local government in this and recent earthquakes.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura.

Research papers, University of Canterbury Library

© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Prediction of building collapse due to significant seismic motion is a principle objective of earthquake engineers, particularly after a major seismic event when the structure is damaged and decisions may need to be made rapidly concerning the safe occupation of a building or surrounding areas. Traditional model-based pushover analyses are effective, but only if the structural properties are well understood, which is not the case after an event when that information is most useful. This paper combines hysteresis loop analysis (HLA) structural health monitoring (SHM) and incremental dynamic analysis (IDA) methods to identify and then analyse collapse capacity and the probability of collapse for a specific structure, at any time, a range of earthquake excitations to ensure robustness. This nonlinear dynamic analysis enables constant updating of building performance predictions following a given and subsequent earthquake events, which can result in difficult to identify deterioration of structural components and their resulting capacity, all of which is far more difficult using static pushover analysis. The combined methods and analysis provide near real-time updating of the collapse fragility curves as events progress, thus quantifying the change of collapse probability or seismic induced losses very soon after an earthquake for decision-making. Thus, this combination of methods enables a novel, higher-resolution analysis of risk that was not previously available. The methods are not computationally expensive and there is no requirement for a validated numerical model, thus providing a relatively simpler means of assessing collapse probability immediately post-event when such speed can provide better information for critical decision-making. Finally, the results also show a clear need to extend the area of SHM toward creating improved predictive models for analysis of subsequent events, where the Christchurch series of 2010–2011 had significant post-event aftershocks.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES), induced extensive damage in residential buildings and led to over NZ$40 billion in total economic losses. Due to the unique insurance setting in New Zealand, up to 80% of the financial losses were insured. Over the CES, the Earthquake Commission (EQC) received more than 412,000 insurance claims for residential buildings. The 4 September 2010 earthquake is the event for which most of the claims have been lodged with more than 138,000 residential claims for this event only. This research project uses EQC claim database to develop a seismic loss prediction model for residential buildings in Christchurch. It uses machine learning to create a procedure capable of highlighting critical features that affected the most buildings loss. A future study of those features enables the generation of insights that can be used by various stakeholders, for example, to better understand the influence of a structural system on the building loss or to select appropriate risk mitigation measures. Previous to the training of the machine learning model, the claim dataset was supplemented with additional data sourced from private and open access databases giving complementary information related to the building characteristics, seismic demand, liquefaction occurrence and soil conditions. This poster presents results of a machine learning model trained on a merged dataset using residential claims from the 4 September 2010.

Research papers, University of Canterbury Library

Meeting the Sustainable Development Goals by 2030 involves transformational change in the business of business, and social enterprises can lead the way in such change. We studied Cultivate, one such social enterprise in Christchurch, New Zealand, a city still recovering from the 2010/11 Canterbury earthquakes. Cultivate works with vulnerable youth to transform donated compost into garden vegetables for local restaurants and businesses. Cultivate’s objectives align with SDG concerns with poverty and hunger (1 & 2), social protection (3 & 4), and sustainable human settlements (6 & 11). Like many grant-supported organisations, Cultivate is required to track and measure its progress. Given the organisation’s holistic objectives, however, adequately accounting for its impact reporting is not straightforward. Our action research project engaged Cultivate staff and youth-workers to generate meaningful ways of measuring impact. Elaborating the Community Economy Return on Investment tool (CEROI), we explore how participatory audit processes can capture impacts on individuals, organisations, and the wider community in ways that extend capacities to act collectively. We conclude that Cultivate and social enterprises like it offer insights regarding how to align values and practices, commercial activity and wellbeing in ways that accrue to individuals, organisations and the broader civic-community.

Research papers, University of Canterbury Library

The initial goal of this research was to explore how SME business models change in response to a crisis. Keeping this in mind, the business model canvas (Osterwalder & Pigneur, 2010) was used as a tool to analyse SME business models in the Canterbury region of New Zealand. The purpose was to evaluate the changes SMEs instituted in their business models after being hit by a series of earthquakes in 2010 and 2011. The idea was to conduct interviews with business owners and analyse them using grounded theory methods. As this method is iterative and requires simultaneous data collection and analysis, a tentative model was proposed after first phase of the data collection and analysis. However, as a result of this process, it became apparent that owner-specific characteristics, action orientation and networks were more prominent in the data than business model elements. Although the SMEs in this study experienced several operational changes in their business models, such as a change of location, modifications to their payment terms or expanded/restricted target markets, the suggested framework highlights how owner-specific attributes ensured the recovery of their businesses. After the initial framework was suggested, subsequent interviews were conducted to test, verify, and modify the tentative model. Three aspects of business recovery emerged: (a) cognitive coping – the business owner’s mind-set and motive; (b) adaptive coping – the ability of business owner to take corrective actions; and (c) social capital – the social network of a business owner, including formal and informal connections and their significance. Three distinct groups were identified; self-sufficient SMEs, socially-based SMEs and surviving SMEs. This thesis proposes a grounded theory of business recovery for SMEs following a disaster. Cognitive coping and social capital enabled the owners to take actions, which eventually led to the desired outcomes for the businesses.

Research papers, University of Canterbury Library

Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.

Research papers, University of Canterbury Library

There is a growing awareness of the need for the earthquake engineering practice to incorporate in addition to empirical approaches in evaluation of liquefaction hazards advanced methods which can more realistically represent soil behaviour during earthquakes. Currently, this implementation is hindered by a number of challenges mainly associated with the amount of data and user-experience required for such advanced methods. In this study, we present key steps of an advanced seismic effective-stress analysis procedure, which on the one hand can be fully automated and, on the other hand, requires no additional input (at least for preliminary applications) compared to simplified cone penetration test (CPT)-based liquefaction procedures. In this way, effective-stress analysis can be routinely applied for quick, yet more robust estimations of liquefaction hazards, in a similar fashion to the simplified procedures. Important insights regarding the dynamic interactions in liquefying soils and the actual system response of a deposit can be gained from such analyses, as illustrated with the application to two sites from Christchurch, New Zealand.

Research papers, University of Canterbury Library

The performance of buildings in recent New Zealand earthquakes (Canterbury, Seddon and Kaikōura), delivered stark lessons on seismic resilience. Most of our buildings, with a few notable exceptions, performed as our Codes intended them to, that is, to safeguard people from injury. Many buildings only suffered minor structural damage but were unable to be reused and occupied for significant periods of time due to the damage and failure of non-structural elements. This resulted in substantial economic losses and major disruptions to our businesses and communities. Research has attributed the damage to poor overall design coordination, inadequate or lack of seismic restraints for non structural elements and insufficient clearances between building components to cater for the interaction of non structural elements under seismic actions. Investigations have found a clear connection between the poor performance of non-structural elements and the issues causing pain in the industry (procurement methods, risk aversion, the lack of clear understanding of design and inspection responsibility and the need for better alignment of the design codes to enable a consistent integrated design approach). The challenge to improve the seismic performance of non structural elements in New Zealand is a complex one that cuts across a diverse construction industry. Adopting the key steps as recommended in this paper is expected to have significant co-benefits to the New Zealand construction industry, with improvements in productivity alongside reductions in costs and waste, as the rework which plagues the industry decreases.

Research papers, University of Canterbury Library

Following the recent earthquakes in Chile (2010) and New Zealand (2010/2011), peculiar failure modes were observed in Reinforced Concrete (RC) walls. These observations have raised a global concern on the contribution of bi-directional loading to these failure mechanisms. One of the failure modes that could potentially result from bidirectional excitations is out-of-plane shear failure. In this paper an overview of the recent experimental and numerical findings regarding out-of-plane shear failure in RC walls are presented. The numerical study presents the Finite Element (FE) simulation of wall D5-6 from the Grand Chancellor Hotel that failed in shear in the out-of-plane direction in the February 2011 Christchurch earthquake. The main objective of the numerical study was to investigate the reasons for this failure mode. The experimental campaign includes the recent experiments conducted in the Structural Engineering Laboratory of the University of Canterbury. The experimental study included three rectangular slender RC walls designed based on NZS3101: 2006-A3 (2017) for three different ductility levels, namely: nominally ductile, limited ductile and ductile. The numerical results showed that high axial load combined with bi-directional loading caused the out-of-plane shear failure in wall D5-6 from the Grand Chancellor Hotel. This was also confirmed and further investigated in the experimental phase of the study.