Search

found 1085 results

Research papers, University of Canterbury Library

Slender precast concrete wall panels are currently in vogue for the construction of tall single storey warehouse type buildings. Often their height to thickness ratio exceed the present New Zealand design code (NZS 3101) limitations of 30:1. Their real performance under earthquake attack is unknown. Therefore, this study seeks to assess the dynamic performance of slender precast concrete wall panels with different base connection details. Three base connections (two fixed base and one rocking) from two wall specimens with height to thickness ratios of 60:1 were tested under dynamic loading. The two fixed based walls had longitudinal steel volumes of 1.27% to 0.54% and were tested on the University of Canterbury shaking table to investigate their proneness to out-of-plane buckling. Based on an EUler-type theoretical formula derived as part of the study, an explanation is made as to why walls with high in-plane capacity are more prone to buckling. The theory was validated against the present and past experimental evidence. The rocking base connection designed and built in accordance with a damage avoidance philosophy was tested on the shaking table in a similar fashion to the fixed base specimens. Results show that in contrast with their fixed base counterparts, rocking walls can indeed fulfil a damage-free design objective while also remaining stable under strong earthquake ground shaking.

Research papers, University of Canterbury Library

Following a major earthquake event, essential public amenities such as medical facilities and transport networks need to remain functional - not only to fulfil their ongoing role in serving the community but also to cope with the added and immediate demand of a population affected by a natural disaster. Furthermore, the economic implications of wide spread damage to housing and commercial facilities should not be discounted. A shift in design approach is required that is consistent with current trends towards performance based building design. The present aim is to achieve seismic energy dissipation during the earthquake event, without the aftermath of damage to structural elements, whilst maintaining design economies. Structures permitted to rock on their foundations and provide recoverable rotations at the beam-column interfaces offer significant advantages over those using conventional ductile detailing. A jointed construction philosophy can be applied whereby structural elements are connected with unbonded prestressing tendons. Supplemental damping is provided by replaceable flexural steel components designed to deform inelastically. For this research a multi-storey test building of one quarter scale has been constructed and tested on an earthquake simulator at the University of Canterbury. A computer model has been developed and a set ofpreliminary design procedures proposed.

Research papers, University of Canterbury Library

Structural members made of laminated veneer lumber (LVL) in combination with unbonded post-tensioning have recently been proposed, which makes it possible to design moment-resisting frames with longer spans for multi-storey timber buildings. It has been shown that prefabricated and prestressed timber structures can be designed to have excellent seismic resistance, with enhanced re-centring and energy dissipation characteristics. The post-tensioning provides re-centring capacity while energy is dissipated through yielding of mild steel dissipating devices. This paper summarizes an experimental investigation into the seismic response of LVL columns to bi-directional seismic loading, performed as part of a research programme on timber structures at the University of Canterbury. The experimental investigation includes testing under both quasi-static cyclic and pseudo-dynamic protocols. The results show excellent seismic performance, characterized by negligible damage of the structural members and small residual deformations, even under the combined effect of loading in two directions. Energy is dissipated mostly through yielding of external dissipators connecting the column and the foundation, which can be easily removed and replaced after an earthquake. Since post-tensioning can be economically performed on site, the system can be easily implemented in multi-storey timber buildings

Research papers, University of Canterbury Library

A three dimensional approximately half scale experimental subassemblage is currently being tested at the University of Canterbury to investigate the effect of precast-prestressed floor units, which do not span past the internal columns, on the seismic performance of reinforced concrete moment resisting frames. This paper reports the preliminary results from the test, with the focus on elongation within the plastic hinges and strength enhancement in the frames. The preliminary results have shown that elongation between the external and internal plastic hinges varies by more than two fold. With the addition of the prestressed floor units, the strength of the moment resisting frame used in the test was found to be 25% higher than the current code specified value. In other situations, particularly where there are more than 2 bays in a moment resisting frame, greater strength enhancement may be expected. Any underestimation of beam strength is undesirable as it may result in the development of nonductile failure modes in a major earthquake.

Research papers, University of Canterbury Library

During the past two decades, the focus has been on the need to provide communities with structures that undergo minimal damage after an earthquake event while still being cost competitive. This has led to the development of high performance seismic resisting systems, and advances in design methodologies, in order respect this demand efficiently. This paper presents the experimental response of four pre-cast, post-tensioned rocking wall systems tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building, but are equally applicable for use in new design. Design of the wall followed a performance-based retrofit strategy in which structural limit states appropriate to both the post-tensioned wall and the existing building were considered. Dissipation for each of the four post-tensioned walls was provided via externally mounted devices, located in parallel to post-tensioned tendons for re-centring. This allowed the dissipation devices to be easily replaced or inspected following a major earthquake. Each wall was installed with viscous fluid dampers, tension-compression yielding steel dampers, a combination of both or no devices at all – thus relying on contact damping alone. The effectiveness of both velocity and displacement dependant dissipation are investigated for protection against far-field and velocity-pulse ground motion characteristics. The experimental results validate the behaviour of ‘Advanced Flag-Shape’ rocking, dissipating solutions which have been recently proposed and numerically tested. Maximum displacements and material strains were well controlled and within acceptable bounds, and residual deformations were minimal due to the re-centring contribution from the post-tensioned tendons. Damage was confined to inelastic yielding (or fluid damping) of the external dampers.

Research papers, University of Canterbury Library

It is fast becoming common practice for civil engineering infrastructure and building structures to be designed to achieve a set of performance objectives. To do so, consideration is now being given to systems capable of sustaining minimal damage after an earthquake while still being cost competitive. This has led to the development of high performance seismic resisting systems, followed by advances in design methodologies. The paper presents the experimental response of four pre-cast, post-tensioned rocking walls with high-performing dissipating solutions tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building however, can also be used for the design of new, high-performance structures. The use of externally mounted dampers allowed numerous dissipation schemes to be explored including mild-steel dampers (hysteretic dampers), viscous dampers, a combination of both or no dampers. The advantages of both velocity and displacement dependant dissipation was investigated for protection against strong ground motions with differing rupture characteristics i.e. far-field and near-field events. The experimental results are used to verify a proposed design procedure for post-tensioned rocking systems with supplementary hysteretic and viscous dissipation. The predicted response compared well with the measured shake-table response.

Research papers, University of Canterbury Library

The lateral capacity of a conventional CLT shear wall is often governed by the strength and stiffness of its connections, which do not significantly utilize the in-plane strength of the CLT. Therefore, CLT shear walls are not yet being used efficiently in the construction of mass timber buildings due to a lack of research on high-capacity connections and alternative wall configurations. In this study, cyclic experiments were completed on six full-scale, 5-ply cantilever CLT shear walls with high-capacity hold-downs using mixed angle screws and bolts. All specimens exhibited significantly higher strength and stiffness than previously tested conventional CLT shear walls in the literature. The base connections demonstrated ductile failure modes through yielding of the hold-down connections. Based on the experimental results, numerical models were calibrated to investigate the seismic behaviour of CLT shear walls for prototype buildings of 3 and 6-storeys in Christchurch, NZ. As an alternative to cantilever (single) shear walls, a type of coupled wall with steel link beams between adjacent CLT wall piers was investigated. Effective coupling requires the link beam-to-wall connections to have adequate strength to ensure ductile link beam responses and adequate stiffness to yield the link beams at a relatively low inter-storey drift level. To this end, three beam-to-wall connection types were developed and cyclically tested to investigate their behaviour and feasibility. Based on the test results of the critical connection, a 3-storey, 2/3-scale coupled CLT wall specimen with three steel link beams and mixed angle screwed hold-downs was cyclically tested to evaluate its performance and experimentally validate the system concept. The test results showed a relatively high lateral strength compared to conventional CLT shear walls, as well as a high system ductility ratio of 7.6. Failure of the system was characterised by combined bending and withdrawal of the screws in the mixed angle screw hold-downs, yielding and eventual inelastic buckling of the steel link beams, CLT toe crushing, and local CLT delamination. Following the initial test, the steel link beams, mixed angle screw hold-downs, and damaged CLT regions were repaired, then the wall specimen was re-tested. The repaired wall behaved similarly to the original test and exhibited slightly higher energy dissipation and peak strength, but marginally more rapid strength deterioration under cyclic loading. Several hybrid coupled CLT shear walls were numerically modelled and calibrated based on the results of the coupled wall experiments. Pushover analyses were conducted on a series of configurations to validate a capacity design method for the system and to investigate reasonable parameter values for use in the preliminary design of the system. Additionally, an iterative seismic design method was proposed and used to design sample buildings of 6, 8, and 10-storeys using both nonlinear pushover and nonlinear time history analyses to verify the prototype designs. Results of the sample building analyses demonstrated adequate seismic behaviour and the proposed design parameters were found to be appropriate. In summary, high-capacity CLT shear walls can be used for the resistance of earthquakes by using stronger base connections and coupled wall configurations. The large-scale experimental testing in this study has demonstrated that both cantilever and coupled CLT shear walls are feasible LLRSs which can provide significantly greater lateral strength, stiffness, and energy dissipation than conventional CLT shear wall configurations.

Research papers, University of Canterbury Library

- The Avon-Ōtākaro Redzone is an 11 kilometer stretch of land along the Avon-Ōtākaro River in Christchurch. - This project focused on the creation of a publicly available biodiversity map of the AvonŌtākaro River Corridor, a project undertaken as part of the ecological restoration of the Christchurch redzone. - This project originated from the Christchurch 2010-2011 earthquake sequence which saw liquefaction damage along 11km of the Avon River. Under guidance from The Nature Lab & Ōtākaro Living Laboratory, and various other experts, the primary research objective was to map historical biodiversity, identify hotspots, and assess areas for potential revegetation. - The data collected came from historical black maps, current iNaturalist data, and soil classification information. - The findings show that, pre-colonialism, the area was composed of herbaceous areas, wetlands, native shrubland, and tussock land, with key plants such as river, fern, tutu, and cabbage trees. - The post-earthquake analysis shows a transition from a residential area to patchy grasslands and swampy areas. - The findings also showed a strong relationship between historic sites and soil classifications, providing knowledge for past and future vegetation patterns and spread. - This map will be a valuable resource for conservation efforts and public engagement as the area transitions into a blue-green corridor.

Research papers, University of Canterbury Library

This thesis focuses on the role of legal preparedness for managing large-scale urban disasters in Aotearoa New Zealand. It uses the Auckland Volcanic Field as a case study to answer the question: ‘is New Zealand’s current legal framework prepared to respond to and recover from a large-scale urban disaster?’. The Auckland Volcanic Field was chosen as the main case study because a future eruption is a low likelihood, high-impact event that New Zealand is going to have to manage in the future. Case studies are a key feature of this thesis as both New Zealand based and overseas examples are used to explore the role of legal preparedness by identifying and investigating a range of legal issues that need to be addressed in advance of a future Auckland Volcanic Field eruption. Of particular interest is the impact of legal preparedness for the recovery phase. The New Zealand case studies include; Canterbury earthquake sequence 2010-2011, the Kaikōura earthquake 2016, the Auckland flooding 2018, and the North Island Severe Weather event 2023, which encompasses both the Auckland Anniversary weekend flooding and Cyclone Gabrielle. As New Zealand has not experienced a large-scale urban volcanic eruption, overseas examples are explored to provide insights into the legal issues that are volcano specific. The overseas volcanic case studies cover eruptions in Heimaey (Iceland), the Soufrière Hills (Montserrat and the Grenadines), La Soufrière (St Vincent) and Tungurahua (Ecuador). New Zealand’s past experiences highlight a trend for introducing post-event legal frameworks to manage recovery. Consequently, the current disaster management system is not prioritising legal preparedness and instead is choosing to rely on exceptional powers. Unsurprisingly, the introduction of new post-event recovery frameworks has repercussions. In New Zealand, new post-event legal frameworks are introduced swiftly under urgency, they contain broad unstructured decision-making powers, and are often flawed. As these exceptional new frameworks sit outside the ‘normal’ legal frameworks, they in effect create a parallel “shadow system”. Based on the evidence explored in this thesis it does not appear that Auckland’s current disaster management framework is prepared to deal with a large-scale urban event caused by an Auckland Volcanic Field eruption. Following this conclusion, it is the submission of this thesis that New Zealand’s current legal framework is not prepared to respond to and recover from a large-scale urban disaster. To become legally prepared, New Zealand needs to consider the legal tools required to manage large-scale urban disasters in advance. This will prevent the creation of a legal vacuum in the aftermath of disasters and the need for new recovery frameworks. Adopting a new attitude will require a change in approach towards legal preparedness which prioritises it, rather than sidelining it. This may also require changes within New Zealand’s disaster management system including the introduction of a formal monitoring mechanism, which will support and prioritise legal preparedness. This thesis has shown that not legally preparing for future disasters is a choice which carries significant consequences. None of these consequences are inevitable when managing large-scale disasters, however they are inevitable when frameworks are not legally prepared in advance. To not legally prepare, is to prepare to fail and thus create a disaster by choice.

Research papers, University of Canterbury Library

Picture this, you are relaxing at home enjoying the afternoon sun. It is another beautiful Christchurch day in late 2017. There is a knock at the door, you’ve been expecting it. It is a member of the Christchurch Health and Development Study, here to conduct your prearranged interview. The interview request did not come as a surprise of course, you have been participating in these interviews yourself sporadically throughout your adult life, and prior to that you attended many alongside your parents. In fact, you have been answering the studies interview your whole life. Transcripts of these interviews sit in the studies database alongside copies of school reports, health records and a wealth of other information. It has been this way since birth, since your mother was approached back in 1977, not long after you had arrived in this world, and asked if she would consent to participating in the study. She, along with many other Cantabrian new mothers from that year, agreed and the Christchurch Health and Development Study was born. Since then, these interviews have become a matter of routine for you. As life went on many things changed, but one thing that was constant was the sporadic visit from an interviewer of the study. The current interview is a little different from most of the others, however. Last time an interviewer visited in 2012, you were asked if you would like to conduct an earthquake-specific interview, you agreed. This time, the same question was asked. Why? Well because you were there that day of course. The day of the 22nd February 2011 when a major earthquake struck Canterbury. You were there in the centre of the city as buildings came crashing down and people ran for safety. You were there for the chaos. Your knee dully aches, it never did quite heal properly and strangely seems to flare up whenever you think back to that day. A lasting reminder. It is a difficult subject, but you agree to the second earthquake-specific interview. You understand the purpose of the study, and the value of the data collected. You take a sip of the cup of tea politely made upon the interviewer’s arrival, lean back into the comfort of your couch and cast your mind back to that fateful day. So, what does this study mean? Why still participate, all these years later? Over time it has become more apparent as to how valuable this information could be, considering all the experiences through the life course, and to think of the experiences that others in the cohort have had too. How differently have events affected people from all walks of life, who just so happened to be born within the same few months. We can use the data from this study to better understand situations when using life course characteristics which can hopefully influence decision making and population health within New Zealand.

Research papers, University of Canterbury Library

Many contemporary urban communities are challenged by increased flood risks and rising temperatures, declining water quality and biodiversity, and reduced mental, physical, cultural and social wellbeing. The development of urban blue-green infrastructure (BGI), defined as networks of natural and semi-natural blue-green spaces which enable healthy ecosystem processes, has been identified as one approach to mitigate these challenges and enable more liveable cities. Multiple benefits associated with urban BGI have been identified, including reduced flood risk and temperatures, improved water quality and biodiversity, enhanced mental and physical wellbeing, strengthened social cohesion and sense of place, and the facilitation of cultural connections and practices. However, socio-cultural benefits have tended to be neglected in BGI research and design, resulting in a lack of awareness of how they may be maximised in BGI design. As such, this research sought to understand how BGI can best be designed to enable liveable cities. Four questions were considered: (i) what benefits are associated with urban BGI, (ii) how does the design process influence the benefits achieved by BGI, (iii) what challenges are encountered during BGI design, and (iv) how might the incorporation of communities and Indigenous knowledge into BGI research and design enhance current understandings and applications of urban BGI? To address these questions, a mixed methods case study approach was employed in Ōtautahi Christchurch and Kaiapoi. The four selected case studies were Te Oranga Waikura, Wigram Basin, Te Kuru and the Kaiapoi Honda Forest. The cases are all council owned urban wetlands which were primarily designed or retrofitted to reduce urban flood risks following the Canterbury Earthquake Sequence. To investigate BGI design processes in each case, as well as how communities interact with, value and benefit from these spaces. BGI projects were found to be designed by interdisciplinary design teams driven by stormwater engineers, landscape architects and ecologists which prioritised bio-physical outcomes. Further, community and Indigenous engagement approaches closely resembled consultation, with the exception of Te Kuru which employed a co-design approach between councils and Indigenous and community groups. This co-design approach was found to enhance current understandings and applications of urban BGI, while uncovering multiple socio-cultural values to be incorporated into design, such as access to cultural healing resources, increased community connections to water, and facilitating cultural monitoring methodologies and citizen science initiatives. Communities frequently identified the opportunity to connect with natural environments and enhanced mental and physical wellbeing as key benefits of BGI. Conversely, strengthened social cohesion, sense of place and cultural connections were infrequently identified as benefits, if at all. This finding indicates a disconnect between the bio-physical benefits which drive BGI design and the outcomes which communities value. As such, there is a need for future BGI design to more fully consider and design for socio- cultural outcomes to better enable liveable cities. To better design BGI to enhance urban liveability, this research makes three key contributions. First, there is a need to advance current approaches to transdisciplinary design to better account for the full scope of perspectives and values associated with BGI. Second, there is a need to transition towards relational co-design with Indigenous and community groups and knowledge. Third, it is important to continue to monitor, reflect on and share both positive and negative BGI design experiences to continually improve outcomes. The incorporation of social and cultural researchers, knowledges and perspectives into open and collaborative transdisciplinary design teams is identified as a key method to achieve these opportunities.

Research papers, University of Canterbury Library

Natural disasters are highly traumatic for those who experience them, and they can have an immense and often lasting emotional impact (Cox et al., 2008). Emotion has been studied in linguistics through its enactment in language, and this field of research has increased over the past decades. Despite this, the expression of emotion in post-disaster narratives is a largely unexplored field of research. This thesis investigates how emotion is expressed in narratives taken from the QuakeBox corpus (Walsh et al., 2013), recorded, following the Christchurch earthquakes, in 2012 and rerecorded in 2019. I take a mixed methods approach, combining computer-based emotion recognition software and discourse analytic techniques, to explore the expression of emotion at both a broad and narrow level. Two emotion recognition programs, Empath (Fast et al., 2016) and Speechbrain (Ravanelli et al., 2021), are employed to measure the levels of positive and negative emotion detected in a wide dataset of participants, which are investigated in relation to the gender and age of participants, and the temporal difference between the first and second QuakeBox recordings. In a second phase, a subset of these participants’ narratives was analysed qualitatively, exploring the co-construction of emotion and identity through a social constructionist lens and examining the societal Discourses present in the earthquake narratives. The findings highlight the relevance of gender in the expression of emotion. Female speakers have higher levels of positive emotion than non-female speakers in the findings of both emotion recognition programs, and there is a clear gendered difference in the construction of identity in the narratives, influencing the expression of emotion. The expression of emotion also appears to be mediated by New Zealand culture. Within this, a Discourse of the Christchurch earthquakes emerges, with motifs of luck, gratitude, and community, which reflects the values of the people of Christchurch at the time. Findings reinforced in both phases of the analysis also indicate differences between the lexical content and acoustic features in the emotion expressions, supporting previous research that argues that the expression of emotion, as a performative act, does not reflect the speaker’s inner state directly. This research adds a new dimension to (socio)linguistic research on emotion, as well as providing insight into how crisis survivors display emotion in their post-disaster narratives.

Research papers, University of Canterbury Library

Surface-rupturing earthquakes can trigger the sudden avulsion of river channels, causing rapid and persistent coseismic flooding of previously unaffected areas. This phenomenon, known as fault-rupture-induced river avulsion (FIRA), occurs when fault displacement significantly alters river channel topography. The importance of understanding FIRA as a secondary seismic hazard was highlighted by events during the 2010 Darfield and 2016 Kaikoura earthquakes in New Zealand. This thesis develops a national model to identify and quantify FIRA susceptibility across New Zealand by integrating hydrological datasets (NIWA RiverMaps and Flood Statistics) with active fault information (NZ Active Faults Database and RSQSim earthquake simulations). The methodology applies the F-index framework proposed by McEwan et al. (2023), which quantifies FIRA potential based on the ratio of fault throw plus discharge-dependent depth to bank full depth at each fault-river intersection. The model successfully identified 3,796 potential FIRA-susceptible fault-river intersections nationwide, with 451 involving waterways equal to or larger than the Hororata River. Regional analysis revealed higher concentrations of FIRA-susceptible sites in the Bay of Plenty, Canterbury, and Marlborough regions. Validation against historical events showed the model effectively located known FIRA occurrences from the Kaikoura and Darfield earthquakes, though with some limitations in accurately predicting F-index values due to complex fault displacement patterns and challenges in modelling bank full depths of large, braided rivers. This research establishes New Zealand's first nationwide assessment of fault-induced river avulsion susceptibility. The approach creates a structured methodology for identifying high-risk fault-river intersections and determining which sites require thorough localised examination. The methodology developed offers a template for similar assessments in other tectonically active regions and contributes to improving earthquake hazard assessment and disaster preparedness planning.

Research papers, University of Canterbury Library

Gravelly soils’ liquefaction has been documented since early 19th century with however the focus being sand-silts mixture – coarse documentation of this topic, that gravels do in fact liquefy was only acknowledged as an observation. With time, we have been impacted by earthquakes, EQ causing more damage to our property: life and environment-natural and built. In this realm of EQ related-damage the ground or soils in general act as buffer between the epicentre and the structures at a concerned site. Further, in this area, upon the eventual acknowledgement of liquefaction of soils as a problem, massive efforts were undertaken to understand its mechanics, what causes and thereby how to mitigate its ill-effects. Down that lane, gravelly soils’ liquefaction was another milestone covered in early 20th century, and thus regarded as a problematic subject. This being a fairly recent acknowledgement, efforts have initiated in this direction (or area of particle size under consideration-gravels>2mm), with this research outputs intended to complement that research for the betterment of our understanding of what’s happening and how shall we best address it, given the circumstances: socio (life) - environment (structures) - economic (cost or cost-“effectiveness’) and of course political (our “willingness” to want to address the problem). Case histories from at least 29 earthquakes worldwide have indicated that liquefaction can occur in gravelly soils (both in natural deposits and manmade reclamations) inducing large ground deformation and causing severe damage to civil infrastructures. However, the evaluation of the liquefaction resistance of gravelly soils remains to be a major challenge in geotechnical earthquake engineering. To date, laboratory tests aimed at evaluating the liquefaction resistance of gravelly soils are still very limited, as compared to the large body of investigations carried out on assessing the liquefaction resistance of sandy soils. While there is a general agreement that the liquefaction resistance of gravelly soils can be as low as that of clean sands, previous studies suggested that the liquefaction behaviour of gravelly soils is significantly affected by two key factors, namely relative density (Dr) and gravel content (Gc). While it is clear that the liquefaction resistance of gravels increases with the increasing Dr, there are inconclusive and/or contradictory results regarding the effect of Gc on the liquefaction resistance of gravelly soils. Aimed at addressing this important topic, an investigation is being currently carried out by researchers at the University of Canterbury, UC. As a first step, a series of undrained cyclic triaxial tests were conducted on selected sand-gravel mixtures (SGMs), and inter-grain state framework concepts such as the equivalent and skeleton void ratios were used to describe the joint effects of Gc and Dr on the liquefaction resistance of SGMs. Following such experimental effort, this study is aimed at providing new and useful insights, by developing a critical state-based method combined with the inter-grain state framework to uniquely describe the liquefaction resistance of gravelly soils. To do so, a series of monotonic drained triaxial tests will be carried out on selected SGMs. The outcomes of this study, combined with those obtained to date by UC researchers, will greatly contribute to the expansion of a worldwide assessment database, and also towards the development of a reliable liquefaction triggering procedure for characterising the liquefaction potential of gravelly soils, which is of paramount importance not only for the New Zealand context, but worldwide. This will make it possible for practising engineers to identify liquefiable gravelly soils in advance and make sound recommendations to minimise the impact of such hazards on land, and civil infrastructures.

Research papers, University of Canterbury Library

Overall the results indicate that spawning is taking place in different locations from the prequake pattern. Although egg survival was not measured in this study, sites in new locations may be vulnerable to current or future land-use activities that are incompatible with spawning success. Consequently, there are considerable management implications associated with this spatial shift, primarily relating to riparian management. In particular, there is a need to control threats to spawning sites and achieve protection for the areas involved. This is required under the New Zealand Coastal Policy Statement 2010 and is a prominent objective in a range of other polices and plans.

Research papers, University of Canterbury Library

The University of Canterbury’s RECOVER project (Reef Ecology and Coastal Values, Earthquake Recovery) is a research programme funded by the Ministry of Business, Innovation and Employment (MBIE), and supported by the Ministry of Primary Industries (MPI). It has been evaluating recovery from the 7.8 Mw Kaikōura earthquake in the coastal environment between Oaro in the south and Marfells Beach in the north. The project has documented a wide range of biological and physical impacts in the coastal environment over the past four years. These include the widespread mortality of habitat-forming species that support characteristic ecosystems and natural resources on the coast (Alestra et al. 2021; Schiel et al. 2019; Tait et al. 2021). Due to the popularity of the coast for recreational use, interactions between people and the recovering environment are an important influence on recovery processes. These interactions may include threats to the natural environment but also the potential for positive interventions that could help to restore natural ecosystems and resources – including those that have been degraded in the past. Physical effects of uplift at the coastline include the seaward movement of shorelines and creation of new land above the reach of the tide, leading to a widening of beaches (Orchard et al. 2020; Orchard et al. in press). This has also provided a greater opportunity for off-road vehicle access to sections of the coast previously protected by headlands that were impassable at high tide (Marlborough District Council 2019; Orchard 2020). MDC management responses have included the development of a proposed bylaw to reduce the impacts of motor vehicle use in the area (Marlborough District Council 2021). Changes in the position of the sea-level on the landscape also affect the location of characteristic ecosystems such as sand dunes and storm beaches as they recover to a new norm. Notable changes include the establishment of new dunes closer to the sea which could potentially lead to the degradation of old dune systems that may experience reduced sand supply as a result. Wildlife habitat has also been affected by these uplift and re-assembly effects although the specific impacts remain largely unknown. This report contributes to a collaborative project between the Marlborough District Council (MDC) and University of Canterbury (UC) which aims to help protect and promote the recovery of native dune systems on the Marlborough coast. It is centred around the mapping of dune vegetation and identification of dune protection zones for old-growth seed sources of the native sand-binders spinifex (Spinifex sericeus) and pīngao (Ficinia spiralis). Both are key habitat-formers associated with nationally threatened dune ecosystems (Holdaway et al. 2012), and pīngao is an important weaving resource and Ngāi Tahu taonga species. The primary goal is to protect existing seed sources that are vital for natural regeneration following major disturbances such as the earthquake event. Several additional protection zones are also identified for areas where new dunes are successfully regenerating, including areas being actively restored in the Beach Aid project that is assisting new native dunes to become established where there is available space.

Research papers, University of Canterbury Library

Most people exposed to disasters cope well. Others, however, develop posttraumatic stress disorder (PTSD)–a mental disorder characterised by symptoms of intrusion, avoidance, and hyperarousal–requiring input from specialist mental health services. To date, relatively little research has evaluated these services, and less is known about characteristics of people seeking treatment and their treatment outcomes. In 2010 and 2011, a series of major earthquakes occurred in the Canterbury region of Aotearoa New Zealand, resulting in initiation of the Adult Specialist Services for Earthquake Trauma Treatment (ASSETT) service to provide cognitive behavioural therapy (CBT) for people with earthquake-related PTSD or subthreshold PTSD symptoms. The current research used systematic literature review methods, in conjunction with data collected from people seeking treatment with the ASSETT service, to address issues relevant to the development of disaster mental health responses, particularly specialist mental health services. A systematic review was conducted synthesising research examining mental health service use among adults exposed to natural disasters. A second systematic review and meta-analysis evaluated psychological interventions for earthquake-related PTSD. A series of studies then utilised diagnostic interview and self-report data collected from people seeking treatment with the ASSETT service (n = 184). Data were collected on factors relating to sociodemographics, pre-earthquake mental disorders, current psychological functioning, degree of objective and subjective earthquake exposure, and life events. These studies examined factors distinguishing treatment-seeking participants from earthquake-exposed Canterbury residents who coped well; differences associated with different prior mental disorders and timing of treatment presentation; and outcomes of CBT provided by the service. Four overarching themes emerged across study findings. The first related to the role of objective and subjective disaster exposure in the development of post-disaster mental health outcomes. Subjective peritraumatic responses were found to be an important factor distinguishing treatment-seeking participants from those who coped well following the earthquakes, independent of objective exposure severity. Heightened peritraumatic responses were also associated with poorer treatment outcome, although not beyond their association with pre-treatment PTSD severity and degree of comorbidity. The second theme related to the role of pre-trauma mental health in the development of post-disaster mental health outcomes. Participants with a history of pre-earthquake mental disorder presented with more comorbid disorders than participants with no prior disorder, but reported comparable degrees of PTSD severity and similar treatment outcomes. The third theme related to temporal considerations for disaster mental health responses. Participants who presented at later time points tended to be older and were more likely to have subthreshold PTSD symptoms, but had similar treatment outcomes as those who presented at earlier time points. The fourth theme related to treatment of severe and ongoing earthquake-related distress. CBT without a formal exposure component was associated with clinically significant improvements on a range of outcome measures, with group and individual-based treatment associated with comparable outcomes. Findings of the current research suggest people seeking treatment for severe and ongoing disaster-related distress are not homogenous, and are likely to present for treatment at different time points, have varied mental health histories, and report diverse disaster experiences. CBT is an effective treatment for severe and ongoing post-disaster distress when delivered in real-world mental health service settings. Group CBT represents an efficient, scalable, and effective treatment format for post-disaster distress, and may be an attractive option for treating widespread need using limited resources.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura

Research papers, University of Canterbury Library

According to TS 1170.5, designing a building to satisfy code-prescribed criteria (e.g., drift limit, member safety, P-Δ stability) at the ultimate limit state and relying on the inherent margins within the design code would lead to an acceptable mean annual frequency of collapse (λ꜀) in the range of 10−⁴ to 10−⁵. Modern performance objectives, such as λ꜀ and expected annual loss (EAL), are not explicitly considered. Although buckling-restrained braced frame (BRBF) buildings were widely adopted as lateral load-resisting systems for office and car park buildings in the Christchurch rebuild following the Canterbury earthquakes in New Zealand, there are currently no official guidelines for their design. The primary focus of this study is to develop a risk-targeted design framework for BRBF buildings that can achieve the performance objectives desired by stakeholders. To this extent, key factors influencing λ꜀ and EAL of BRBF buildings are identified. These factors include gusset plate design, number of storeys, design drift limit, BRBF beam-column connection, brace configuration, brace angle, brace material grade, and analysis method (equivalent lateral force vs. modal response spectrum). A novel 3D BRBF modelling approach capable of simulating out-of-plane buckling failure of buckling-restrained brace (BRB) gusset plates is developed. Prior experimental studies on sub-assemblies conducted elsewhere have demonstrated that gusset plates and end zones may buckle out of plane prematurely, before BRBs reach their maximum axial compression load carrying capacity. Current 2D BRBF macro models, typically used in research, cannot simulate this failure mode. A conventional 2D BRBF model underestimates the λ꜀ of a case-study 4-storey super-X configured steel BRBF building (designed according to NZS-3404) by a factor of two compared to the estimate from the proposed 3D model. These findings suggest that the current NZS-3404 gusset plate design method may undersize gusset plates and that using a 2D BRBF model in this case can significantly underestimate λ꜀. Three improved alternative gusset plate design methods that are easy to implement in practice are identified from the literature. Gusset plates in two case-study 4-storey steel BRBF buildings with super-X and diagonal configurations are designed using both the NZS-3404 method and alternative methods. All three alternative design methods are found to be conservative, resulting in an almost three-fold lower λ꜀ for both case-study BRBF buildings compared to those designed using the NZS-3404 method. Analysis results indicate that (i) bidirectional interaction has no significant effect on gusset plate buckling and (ii) mid-span gusset plates are more susceptible to buckling than corner gusset plates. A framework for seismic loss assessment using incremental dynamic analysis (IDA), called loss-oriented hazard-consistent incremental dynamic analysis (LOHC-IDA), is developed. IDA can be conducted with a generic record set, eliminating the arduous site-specific record selection required to conduct multiple stripe analysis (MSA). Traditional IDA, however, is limited in producing hazard-consistent estimates of engineering demand parameters (EDPs), which LOHC-IDA overcomes. LOHC-IDA improves upon existing methods by: (i) incorporating correlations among engineering demand parameters across intensity levels and (ii) using peak ground acceleration (PGA) to predict peak floor acceleration (PFA). For two case-study steel BRBF buildings, LOHC-IDA estimates the EAL and loss distributions conditioned on the intensity level that closely match the MSA results, with an average absolute error of 5%. The influence of factors beyond gusset plate design on the λ꜀ and EAL of 26 case-study steel BRBF buildings (designed in accordance with TS 1170.5) is examined. Hazard-consistent λ꜀ and EAL for these buildings are estimated using the FEMA P-58 loss and risk assessment framework. Among the 26 case-study buildings, 23 satisfy the maximum code-specified λ꜀ limit of 10−⁴. The EAL, normalised by the total building replacement cost, is highest for 2-storey BRBFs (0.22% on average), followed by 4-storey BRBFs (0.16% on average) and 8-storey BRBFs (0.11% on average). Reducing the design drift limit has the most significant effect on lowering λ꜀ (all BRBF designs were drift governed), followed by transitioning from pinned to moment-resisting beam-column connections, reducing the brace angle, and increasing brace strength. BRBF buildings designed using the equivalent lateral force method, on average, have a lower λ꜀ compared to those designed using the modal response spectrum method. Diagonally configured BRBFs exhibit the lowest λ꜀, followed by super- X and chevron configured BRBFs. Most design variables, apart from drift limit and beam-column connection, have limited influence on EAL. A simple method for EDP-targeted design of steel BRBF buildings is proposed. For this purpose, linear regression and CatBoost machine learning models are developed to predict steel BRBF building EDPs using peak storey drift ratio (PSDR) and PFA estimates from the 26 case-study buildings at intensity levels ranging from 80% to 0.5% probability of exceedance in 50 years. The R²ₐₔⱼ of these models is around 0.98, while the average prediction error is less than 10%. Fundamental period (T₁), total building height (Hₜ), and pseudospectral acceleration at T₁, denoted as Sₐ(T₁), are selected as the features to predict PSDR, while T₁, Hₜ, and PGA are the features selected to predict PFA. The EDP-targeted design has three steps: (i) for a given Hₜ value, the PSDR prediction model is used to identify a suitable T₁ that can achieve a desired PSDR target at the design intensity, (ii) a force-based design is then conducted iteratively to achieve the target T₁ by using an appropriate ductility factor and design drift limit, and (iii) based on the T₁ in the final design iteration, the PFA demand estimated by the PFA prediction models is used as a conservative input for the design of acceleration-sensitive non-structural elements. An equation to predict λ꜀ at the design stage is proposed for collapse risk-targeted seismic design of buildings. This equation comprises three principal components: reserve building strength, a proxy for effective structural stiffness, and reserve building deformation capacity. This equation is calibrated for the collapse risk-targeted design of BRBF buildings in New Zealand using results from 26 case-study BRBF buildings. The validity of this equation is demonstrated with three design verification examples designed to specific λ꜀ targets. Considering λ꜀ from hazard-consistent incremental dynamic analysis as the benchmark, the mean absolute percentage error in the design-stage prediction of λ꜀ of the verification buildings is approximately 10%.

Research papers, University of Canterbury Library

Contemporary organisations operate in rapidly evolving complex and ambiguous environments for which traditional change management approaches are insufficient. Under these conditions, organisations need to demonstrate learning and adaptive capabilities to effectively manage crises. Yet, the swift development and enactment of these capabilities can be particularly challenging for large, operationally diverse, and financially constrained public-sector organisations such as universities. Despite growing need for evidence-based research to guide crisis and change management in the higher education sector, the organisational literature offers limited insights. The combined impact of the 2010 and 2011 Canterbury earthquakes with a well-advanced restructure provided an opportunity to investigate institutional adaptation to and management of a compounded planned change (i.e., restructure) and an unplanned change (i.e., natural disaster response) at a university. Beginning in 2016, individual semi-structured interviews were conducted with 20 middle and senior university managers to capture their perspectives of compounded planned and unplanned change management, covering views of leadership, and of operational, structural, relational, and extra-organisational factors. Data were analysed using reflexive thematic analysis. The analysis coalesced into two overarching themes: Change Management Approaches and Lessons Learned through Change. Change Management Approaches evince institutional adaptation factors, along with barriers and enablers to effective change management, arising from the interplay of, and tensions between, leadership capabilities and a longstanding participatory culture. Lessons Learned through Change encompass business continuity mechanisms, and the learning opportunities seized and missed by leaders. The findings assert the primacy of workforce capabilities to 21st-century organisational success and thriving and substantiate that the calibre and availability of workforce capability is contingent on organisational culture and leadership. Leaders must ensure organisational agility by empowering employees, leveraging and integrating their contributions within and across functional units, and promoting effective two-way communication. The research argues for a hybrid repertoire of versatile dynamic organisational leadership qualities and capabilities to effectively navigate the multidimensional challenges and uncertainties in this sector and 21st-century business conditions. Of overarching significance to this repertoire is purpose-oriented emotionally intelligent leadership that honours the individual and collective dignity, diversity, and intelligence of all employees. This research empirically evidences the co-occurrence of planned and unplanned change in contemporary society, and continuous organisational adaptation and resilience to navigate the persistent volatility during a protracted crisis. Accordingly, the thesis argues that continued bifurcation of planned and unplanned change fields, and strategic and change management leadership theories is untenable, and that an integrated framework of organisational leadership and change management methodologies is required for organisations to effectively respond to and navigate the challenges and volatility of contemporary organisational contexts.

Research papers, University of Canterbury Library

In their everyday practice, social workers support those experiencing distress, poverty, oppression, and marginalisation in recovering from past and present crises and trauma. This expertise and knowledge is highly relevant in the aftermath of disasters, which disproportionately impact those on the margins of society. This research examines the experiences of social workers who responded to two major disaster events in Ōtautahi Christchurch, Aotearoa New Zealand: the Canterbury earthquakes of 2010 and 2011, and the Christchurch mosque attacks of 2019. This qualitative study was interpreted through a theoretical framework comprised of posttraumatic growth (PTG), ecological systems theory, the notion of ‘place’, and social capital. Data for this research was collected in two phases; individual interviews with 23 registered social workers who practised through both disaster sequences, and two focus groups which reviewed the findings of the interviews and contributed further reflections on their experiences. The data was analysed through a reflexive thematic analysis (RTA). Analysis of the data revealed three major themes from the individual interviews, and one overall theme from the focus groups. The first theme from the interviews explored participants’ feelings around the challenges associated with disaster practice and how these had enhanced their practice skills, expanded their knowledge, and aided in the development of new skills. The second theme investigated participants’ new understandings of trauma. This theme included a greater appreciation for the negative toll of trauma and how it can manifest, and the unexpected positive changes which can occur as a result of reflecting on traumatic experiences. The third theme from the individual interviews examined how participants felt their sense of resilience was connected to their experiences of support. Through the focus groups, participants contributed further data and knowledge. Participants in the focus groups identified and discussed principles that they felt were necessary for disaster practice, including being trauma attuned, culturally aware, and adaptable individually and organisationally to the changing needs of disaster. These findings have important implications for social work disaster practice and everyday work, both in Aotearoa New Zealand and internationally. The participants’ experiences and perspectives were analysed to develop a model for disaster practice.

Research papers, University of Canterbury Library

This community-partnered thesis explores the impact of ReVision Youth Audits in promoting youth-friendly community spaces in Christchurch, a city undergoing long-term urban transformation following the 2010–2011 earthquakes. In partnership with ReVision, a not-for-profit organisation facilitating youth-led audits of public and community spaces, this research examines how audit recommendations have been implemented by organisations responsible for 23 previously audited sites. Using a mixed-methods approach, including an online stakeholder survey (n = 16) and semi-structured interviews (n = 2), the study identified variation in implementation outcomes, with non-profit organisations reporting higher adoption levels than local government entities. Stakeholders reported that commonly implemented recommendations included enhanced lighting, inclusive signage, additional seating, and youth-focused amenities such as murals, free Wi-Fi, and gender-neutral toilets. The average youth-friendliness score increased from 4.7 to 7.5 out of 10 following implementations, reflecting tangible improvements in accessibility, inclusivity, and youth engagement. Despite these gains, several barriers limited full implementation. Local government stakeholders cited procedural delays, regulatory frameworks, and funding cycles tied to long- term planning. At the same time, non-profits stakeholders faced constraints such as property ownership and limited influence over shared spaces. Challenges related to timing, staffing capacity, and the absence of follow-up mechanisms were also reported. Stakeholders recomended integrating youth input in the design process earlier, as several audits occurred after key planning phases. Feedback on the audit process was largely positive, with high ratings for the clarity of recommendations and the tool's credibility. However, stakeholders advocated for refinements when recording the audit recommendations to capture young people's lived experiences better and sustain youth involvement beyond the initial audit phase. The research demonstrates that the ReVision Youth Audit framework contributes to meaningful improvements in public spaces especially for youth and reinforces the value of youth-informed urban design. This research provides practical guidance for enhancing youth engagement in urban planning and improving the long-term utility of participatory audit frameworks, based on an analysis of both the factors that enabled and those that constrained the implementation of audit recommendations.

Research papers, University of Canterbury Library

Research undertaken and literature reviewed show that major natural disasters present considerable risk to Governors Bay. Earthquakes, and resulting secondary hazards from natural disasters, could lead to the isolation of the Governors Bay community for an extended period. In particular, the rupture of the Alpine Fault and the resulting mega-quake could leave Governors Bay isolated for well over three weeks. Weaknesses in existing infrastructure in Governors Bay further places residents at risk. Therefore, it is essential that residents are prepared for a period of extended isolation, with little to no access to clean water, power, internet and cellular coverage. Ultimately, community preparedness will be the key to maintaining social cohesion and saving lives during an emergency event. The community hub in Governors Bay establishes a pre-determined locale for community co-ordination, collection, and distribution of supplies as well as a functional place to go when all else fails.

Research papers, University of Canterbury Library

In Aotearoa, New Zealand people are living longer, alongside a slowing birthrate, the older population is growing faster than the younger population. As people live longer, there is an increased need for social services and support that cater for older persons, including care takers, mental health services, and community groups. Social work plays an important role in an ageing society because it addresses the multifaceted needs for older people. While there has been recent research conducted on the experiences of older persons, none have been undertaken in the unique context of the Eastern suburbs of Ōtautahi, Christchurch, an area adversely impacted by the 2011 earthquakes. This research specifically looks at the experiences of older residents in the East, considering various intersecting characteristics such as age, gender, ethnicity, socioeconomic status, available supports, community engagement and relationships to explore the multifaceted experiences and needs of this cohort. This research is a qualitative study influenced by intersectionality and place theories. Both underpinning theories are important in understanding social dynamics, identities, and lived experiences within this community research project. I interviewed nine participants from the Eastern suburbs of Ōtautahi, Christchurch using semi-structured interviews. Interviews were analysed using thematic analysis and detailed journaling. The data from these interviews generated the main themes discussed in this thesis: community connections, places with meaning, and accessing social support services.

Research papers, University of Canterbury Library

This survey was established by the University of Canterbury (UC) to assist the Marlborough community in recording and understanding the level and types of recreational beach uses that are occurring at present on the earthquake-affected coast. The questions were designed to capture a comprehensive view of recreational activities and interests and allowed for any activity, view or perspective to be recorded. All responses were anonymous and no identifying information was collected. The survey used an online format open to all interested people 18+ years of age (for informed consent reasons) over a two month period (October – November 2020). The geographic focus of the survey was the coastline between Marfells Beach and the Waima / Ure River which is the area under currently under consideration by Marlborough District Council for development of a new bylaw. However, the design of the survey questions also allowed respondents to record information pertaining to any other area.

Research papers, University of Canterbury Library

Effective management of waste and debris generated by a disaster event is vital to ensure rapid and efficient response and recovery that supports disaster risk reduction (DRR). Disaster waste refers to any stream of debris that is created from a natural disaster that impacts the environment, infrastructure, and property. This waste can be problematic due to extensive volumes, environmental contamination and pollution, public health risks, and the disruption of response and recovery efforts. Due to the complexities in dealing with these diverse and voluminous materials, having disaster waste management (DWM) planning in place pre-event is crucial. In particular, coordinated, interagency plans that have been informed by estimates of waste volumes and types are vital to ensure management facilities, personnel, and recovery resources do not become overwhelmed. Globally, a priority when formulating DWM plans is the robust estimation of disaster waste stream types and volumes. This is a relatively under-researched area, despite the growing risk of natural disasters and increasingly inadequate waste management facilities. In Aotearoa New Zealand, a nation-wide DWM planning tool has been proposed for local government use, and waste amounts from events such as the Christchurch Earthquakes have been estimated. However, there has been little work undertaken to estimate waste types and volumes with a region-specific, multi-hazard focus, which is required to facilitate detailed regional DWM planning. This research provides estimates of potential disaster waste volumes and types in the Waitaha-Canterbury region of the South Island (Te Waipounamu) for three key hazard scenarios: a M8.0 Alpine Fault earthquake with a south-to-north rupture pattern, a far-sourced tsunami using a maximum credible event model for a Peru-sourced event, and major flooding using geospatial datasets taken from available local government modelling. Conducted in partnership with Environment Canterbury and Canterbury CDEM, this estimation work informed stakeholder engagement through multi-agency workshops at the district level. This research was comprised of two key parts. The first was enhancing and extending a disaster waste estimation model used in Wellington and applying it to the Canterbury region to quantify waste volumes and types. The second part was using this model and its estimates to inform engagement with stakeholders in multi-agency, district-level workshops in Kaikōura, Hurunui, and Waimakariri. In these workshops, the waste estimates were used to catalyse discussion around potential issues associated with the management of disaster waste. Regionally, model estimates showed that the earthquake scenario would generate the highest total volume of disaster waste (1.94 million m³), compared to the tsunami scenario (1.89 million m³) and the flood scenario (173,900 m³). Flood waste estimates are likely underrepresented due to limited flood modelling coverage, but still provide a valuable comparison. Whilst waste estimates differ significantly between districts, waste volumes were shown to be not solely dependent on building/population density. The district-level workshops showed that DWM challenges revolved around logistical constraints, public concerns, governance complexities, and environmental issues. Future work should further enhance this estimation model and apply it to other regions of Aotearoa New Zealand, to help develop a set of cohesive DWM plans for each region. The waste estimation model could also be adapted and applied internationally. The findings from this research provide a foundation for advancing DWM planning and stakeholder engagement in the Waitaha-Canterbury region. By offering region-specific waste estimates across multiple hazard scenarios, this work supports district councils and emergency managers in developing informed, proactive strategies for disaster preparedness and response. The insights gained from district-level workshops highlight key challenges that must be addressed in future planning. These outcomes contribute to a broader research agenda for DWM in Aotearoa New Zealand, and offer a framework adaptable to international contexts.

Research papers, University of Canterbury Library

The North Canterbury and Marlborough regions of Aotearoa | New Zealand were severely impacted by almost 30,000 landslides triggered during the 2016 Kaikōura Earthquake. Of these landslides approximately 200 dammed rivers. In the study area near Waiau, rupture of The Humps and Leader faults (and associated ground motions) initiated at least 42 co-seismic landslides. The Leader Landslide is the largest of these landslides, with an area of approximately 600,000 m2 and a volume of 6-8 million m3. The landslide buried approximately 980 m of active Leader River bed length and dammed the river. The dam produced four lakes, with two remaining today and two having been breached by partial landslide collapse and knickpoint migration in the year following the earthquake. As of 2025, the landslide dam has not been completely breached and Lake Rebekah remains. The Leader Landslide dam presents a unique opportunity to chart the evolution of the active riverbed pre- and post-earthquake, for up to 2 km downstream of Lake Rebekah. The river’s evolutionary timeline was observed using LiDAR, satellite aerial imagery, and drone surveys from 2001 to 2024 to develop maps and topographic difference models. Key timeframes for riverbed change events were also constrained with information and dated photography gathered from previous communications with the landowners at Woodchester Station, where the landslide is located. Finally, Schmidt Hammer testing of the Pliocene-Miocene Greta Siltstone Formation was conducted to investigate the role of bedrock strength on the rate of riverbed erosion. I present the history of evolution of the Leader River, pre- and post-earthquake, and consider factors impacting riverbed morphology changes. Despite the stability of Lake Rebekah, these data show that the position and morphology of the Leader River has changed significantly in response to the landslide, with the formation of two knickpoint waterfalls up to 14 m-high, four waterbodies, and diversion of the river around the landslide toe. Evolution of the river is characterised by longer periods of stasis (e.g., months to years) punctuated by rapid changes in riverbed morphology (e.g., hours to weeks) associated with incision and aggradation. In particular, the knickpoints migrated upstream at variable spatial and temporal rates. Factors controlling the rates of processes include; rain-storm events, partial lake outburst flooding, spatial changes in Pliocene-Miocene siltstone bed induration and landowner intervention to stabilise the landslide dam. An overarching conclusion of this thesis is that landforms can develop rapidly (i.e., hours to weeks) and in the absence of historical accounts, could be interpreted to have formed over hundreds to thousands of years.

Research papers, University of Canterbury Library

When researchers seek to understand community resilience, it often centres on individual agents and actors. They look at the traits individuals have in order to help recover from adverse events, as well as the decisionmaking processes required to plan and adapt. In Aotearoa New Zealand, Māori forms of organising can challenge these. This research was about uncovering Māori forms organising and practices in the context of resilience. The methodology I used was He Awa Whiria/Braided Rivers and storytelling analysis in kanohi ki te kanohi/semi-structured interviews to understand how Māori communities responded to and recovered from the 2010 Darfield (Canterbury), 2011 Ōtautahi/Christchurch, and 2016 Kaikōura earthquakes. Five themes emerged from the project: (i) the importance of marae as a powerful physical location, (ii) the value in building strong reciprocal connections and cultural relationships, (iii) the stronghold that kai/food has in helping to heal communities, (iv) the exchange and trading of resources, and (v) being practical when move forward after a disaster event. As a non-Māori researcher, I have been an outsider to te Ao Māori and to Aotearoa. In using this blended methodology, it became apparent that there are many socio-cultural and historical contentions from the effects of colonisation, assimilation, to grappling with Western norms. Notably, the findings pointed to more similarities than differences, such as taking care of family and communities, being community-driven, and ways of coping with adverse events. This revealed that there are similar ways of doing things regardless of having different customs. This research makes several contributions. It contributes to the field of management studies by addressing gaps in how the concept of resilience is viewed from a practical Māori perspective. The research presents emergency management professionals with similar blended and practical strategies to co-design approaches for collaborative readiness, response, and recovery plans and programmes. The study further demonstrates the localised and tangible benefits that can be gained from utilising a blended methodology and storying method. Ultimately, the purpose of the thesis was to start bridging the gap between agencies and communities, to shift to more Indigenous-led approaches, integrating local Indigenous practices and knowledges that lead to more prepared communities in managing, responding to, and recovering from earthquake hazard events.

Research papers, University of Canterbury Library

Welcome to the first Recover newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Ecosystem Recovery). This first issue provides a summary of some of the big changes we’ve seen. In the next issue we’ll be profiling some of the current research as well as ways you can get involved!

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) was a monumental natural disaster in Aotearoa New Zealand that permanently altered Ōtautahi Christchurch’s geography. Following the earthquake events, the central city was in need of recovery and regeneration to return to being an enhanced and thriving space. The Christchurch Central Recovery Plan (CCRP) was developed to outline the aspirations, visions and challenges associated with rebuilding the central city. The purpose of this research was to review the current status of the CCRP, with a particular focus on identifying the projects that have or have not progressed. This research sought to understand which aspects of a post-disaster recovery plan have contributed to successful post-disaster recovery in Ōtautahi Christchurch. Secondary data was used to identify successes and failures in this regard. The results highlighted the top-down approach taken by the central government in the recovery process and a notable lack of community engagement throughout the CCRP. However, there were some projects and aspirations that have enabled Ōtautahi Christchurch to become a thriving city and express its regenerated identity at a local, national, and international level.