Search

found 5 results

Research papers, Victoria University of Wellington

Following devastating earthquakes in 2010 and 2011 in Christchurch, there is an opportunity to use sustainable urban design variables to redevelop the central city in order to address climate change concerns and reduce CO₂ emissions from land transport. Literature from a variety of disciplines establishes that four sustainable urban design variables; increased density, mixed-use development, street layout and city design, and the provision of sustainable public transport, can reduce car dependency and vehicle kilometres travelled within urban populations- widely regarded as indicators of the negative environmental effects of transport.  The key question for the research is; to what extent has this opportunity been seized by NZ’s Central Government who are overseeing the central city redevelopment? In order to explore this question the redevelopment plans for the central city of Christchurch are evaluated against an adapted urban design matrix to determine whether a reduction in CO₂ emissions from land transport is likely to be achieved through their implementation. Data obtained through interviews with experts is used to further explore the extent to which sustainable urban design variables can be employed to enhance sustainability and reduce CO₂ emissions.  The analysis of this data shows that the four urban design variables will feature in the Central Government’s redevelopment plans although the extent to which they are employed and their likely success in reducing CO₂ emissions will vary. Ultimately, the opportunity to redevelop the central city of Christchurch to reduce CO₂ emissions from land transport will be undermined due to timeframe, co-ordination, and leadership barriers.

Research papers, Victoria University of Wellington

©2019. American Geophysical Union. All Rights Reserved. Earthquakes have been inferred to induce hydrological changes in aquifers on the basis of either changes to well water-levels or tidal behavior, but the relationship between these changes remains unclear. Here, changes in tidal behavior and water-levels are quantified using a hydrological network monitoring gravel aquifers in Canterbury, New Zealand, in response to nine earthquakes (of magnitudes M w 5.4 to 7.8) that occurred between 2008 and 2015. Of the 161 wells analyzed, only 35 contain water-level fluctuations associated with “Earth + Ocean” (7) or “Ocean” (28) tides. Permeability reduction manifest as changes in tidal behavior and increased water-levels in the near field of the Canterbury earthquake sequence of 2010–2011 support the hypothesis of shear-induced consolidation. However, tidal behavior and water-level changes rarely occurred simultaneously (~2%). Water-level changes that occurred with no change in tidal behavior reequilibrated at a new postseismic level more quickly (on timescales of ~50 min) than when a change in tidal behavior occurred (~240 min to 10 days). Water-level changes were more than likely to occur above a peak dynamic stress of ~50 kPa and were more than likely to not occur below ~10 kPa. The minimum peak dynamic stress required for a tidal behavior change to occur was ~0.2 to 100 kPa.

Research papers, Victoria University of Wellington

It is well established that urban green areas provide a wide range of social, aesthetic, environmental and economic benefits. The importance of urban green spaces has been known for decades; however the relationship between urban livability and green areas, as incorporated in overall urban green structure, has become the focus of international studies during the last 10 to 15 years. The spatial structure of green space systems has important consequences for urban form; configuring urban resources, controlling urban size, improving ecological quality of urban areas and preventing or mitigating natural disasters. However, in the field of architecture or urban design, very little work has been done to investigate the potential for built form to define and differentiate the edge to a green corridor ... This thesis therefore poses the hypothesis that architecture and urban design critically mediate between city and green corridor, through intensification and definition of the built edge, as a means of contributing to an ecological city form.

Research papers, Victoria University of Wellington

When the devastating 6.3 magnitude earthquake hit Christchurch, Aotearoa New Zealand, at 12.51pm on 22nd February 2011, the psychological and physical landscape was irrevocably changed. In the days and weeks following the disaster communities were isolated due to failed infrastructure, continuing aftershocks and the extensive search and rescue effort which focussed resources on the central business district. In such moments the resilience of a community is truly tested. This research discusses the role of grassroots community groups in facilitating community resilience during the Christchurch 2010/11 earthquakes and the role of place in doing so. I argue that place specific strategies for urban resilience need to be enacted from a grassroots level while being supported by broader policies and agencies.  Using a case study of Project Lyttelton – a group aspiring towards a resilient sustainable future who were caught at the epicentre of the February earthquake – I demonstrate the role of a community group in creating resilience through self-organised place specific action during a disaster. The group provided emotional care, basic facilities and rebuilding assistance to the residents of Lyttelton, proving to be an invaluable asset. These actions are closely linked to the characteristics of social support and social learning that have been identified as important to socio-ecological resilience. In addition this research will seek to understand and explore the nuances of place and identity and its role in shaping resilience to such dis-placing events. Drawing on community narratives of the displacement of place identity, the potential for a progressive sense of place as instigated by local groups will be investigated as an avenue for adaptation by communities at risk of disaster and place destabilisation.

Research papers, Victoria University of Wellington

<b>Aotearoa has undoubtedly some of the most beautiful landscapes in the world, a privilege for its inhabitants. However, as our cities have developed post-colonisation, the connection between the natural environment and its occupants has diminished. Designers play a vital role within an ever evolving world to progress the built environment in a way that reflects and restores vital values that have been deprioritised. Future practice should prioritise diversity, care for the land, enhancement of community space, and sustainable practices.</b> This research sets out to demonstrate that new design methodologies can encourage kaitiakitanga, whilst meeting the needs of urban public space. Initially through critical analysis and literature based research, a study of Ōtautahi Christchurch, the South Island’s largest city, was undertaken. The principles of a ‘15 minute city’ were also explored and applied to the city, establishing issues within the built environment that drove the overall research direction. Through the tools of critical reflection and a research through design methodology, a design toolkit was constructed. This toolkit sets out to provide designers with a simple streamlined method of developing urban interventions that are sustainable and beneficial for human well-being. The toolkit incorporates an abstraction of the ‘15 minute city’ ideology and introduces the concepts of evolving green transportation routes within cities. Ōtautahi Christchurch, a city with a significant history of earthquake-caused damage, was chosen as the primary site for the application of this research’s proposed toolkit. The city becomes a canvas for an urban rebuild that explores and aims to set a precedent for a progressive 21st-century city. A key finding as the toolkit research developed was the idea of a ‘temporary’ phase or intervention, being added to traditional design methodologies prior to permanent building. The research explains how this temporary phase could more actively engage diverse user groups and create active conversations between communities and designers. The refined toolkit sets outs proposed timeline phases, methods of site analysis and development of design drivers. Alongside this, a modular architectural system establishes a design proposal for the temporary phase of an individual site within an evolving green route. This outcome provides further opportunity for realistic testing, which would actively involve communities and aims to shift our priorities within urban development. The introduction of the ‘temporary’ phase is beneficial in mitigating psychological implications on people and limiting physical impacts on the landscape. The final design stage of the thesis applied the toolkit process to three sites in Ōtautahi Christchurch. Through a holistic lens, the toolkit framework set out methods to collate information that provides guidance for development on the sites. While some layers are initiated simply by recognising site characteristics, others are informed through software such as GIS. Connected by a proposed green transport route, the three initial sites are developed with temporary interventions that utilise the modular design set out previously in the research. Contextualising the interventions on real world sites tested the flexibility of the system and allowed for critical reflection on the applicability of the toolkit to Aotearoa. The research concludes by identifying future research opportunities and speculates on possible applications of its findings within the real world. Temporary Permanence highlights the significant role that we, as designers, have in shifting urban priorities to create more holistic, sustainable, and inclusive cities for people and the planet.