Search

found 14 results

Research Papers, Lincoln University

High rise developments dominate skylines and are contentious in many low rise urban environments. Christchurch is no exception and its residents have historically been vocal in articulating their opinions on matters they care about, especially in regard to projects they perceive will ruin their ‘garden city’. At the turn of the millennium, developers were preparing yet another proposal which would get the tongues wagging in Christchurch with the development of the former Ferrymead Tavern site on Ferry Road. The planning process was a long and antagonistic one with many individuals viewing the built towers with a look of ‘disgust’ and discontent. In an ironic twist, the seismic activity in Christchurch over the last few years which has had major implications for a range of planning issues, incrementally led to the death of highly controversial Ferrymead ‘Water’s Edge’ Apartments.

Research Papers, Lincoln University

Artificial Neural Networks (ANN) as a tool offers opportunities for modeling the inherent complexity and uncertainty associated with socio-environmental systems. This study draws on New Zealand ski fields (multiple locations) as socio- environmental systems while considering their perceived resilience to low probability but potential high consequences catastrophic natural events (specifically earthquakes). We gathered data at several ski fields using a mixed methodology including: geomorphic assessment, qualitative interviews, and an adaptation of Ozesmi and Ozesmi’s (2003) multi-step fuzzy cognitive mapping (FCM) approach. The data gathered from FCM are qualitatively condensed, and aggregated to three different participant social groups. The social groups include ski fields users, ski industry workers, and ski field managers. Both quantitative and qualitative indices are used to analyze social cognitive maps to identify critical nodes for ANN simulations. The simulations experiment with auto-associative neural networks for developing adaptive preparation, response and recovery strategies. Moreover, simulations attempt to identify key priorities for preparation, response, and recovery for improving resilience to earthquakes in these complex and dynamic environments. The novel mixed methodology is presented as a means of linking physical and social sciences in high complexity, high uncertainty socio-environmental systems. Simulation results indicate that participants perceived that increases in Social Preparation Action, Social Preparation Resources, Social Response Action and Social Response Resources have a positive benefit in improving the resilience to earthquakes of ski fields’ stakeholders.

Research Papers, Lincoln University

As far as suburbs with bad reputations go, Aranui in Christchurch often seems to dominate local public perceptions. High crime, high unemployment, low incomes, run-down state houses and uncared-for neighbourhoods have been the key words and phrases used over many decades. This reputation achieved national standing over the same period and in 2001 Aranui gained the dubious distinction of becoming the pilot project for the Labour Government’s state housing Community Renewal Programme initiated in 2001. It is common to read “Don’t buy or rent here” comments on websites and blogs advising prospective immigrants on where to live. One of the dispiriting moments in Aranui’s history came in September 2009 with the discovery of two bodies under the floorboards of a Hampshire Street property and the subsequent charge of double-homicide and conviction of local resident Jason Somerville for the murder of his wife Rebecca Chamberlain and neighbour Tisha Lowry.

Research Papers, Lincoln University

Nature has endowed New Zealand with unique geologic, climatic, and biotic conditions. Her volcanic cones and majestic Southern Alps and her verdant plains and rolling hills provide a landscape as rugged and beautiful as will be found anywhere. Her indigenous fauna and flora are often quite different from that of the rest of the world and consequently have been of widespread interest to biologists everywhere. Her geologic youth and structure and her island climate, in combination with the biological resources, have made a land which is ecologically on edge. These natural endowments along with the manner in which she has utilized her land, have given New Zealand some of the most spectacular and rapid erosion to be found. It is quite evident that geologic and climatic conditions combine to give unusually high rates of natural erosion. Present topographic features indicate the past occurrence of large-scale flooding as well. Prior to the arrival of the Maori, it is very likely that most of the land mass of New Zealand below present bush lines was covered with indigenous bush or forest. Forest fires of a catastrophic nature undoubtedly occurred as a result of lightning, and volcanic eruptions. The exposed soils left by these catastrophes contributed to natural deterioration. While vast areas of forest cover were destroyed, they probably were healed by nature with forest or with grass or herbaceous cover. Further, it is probable that large areas in the mountains were, as they are now, subject to landslides and slipping due to earthquakes and excessive local rainfall. Again, the healing process was probably rapid in most of such exposed areas.

Research Papers, Lincoln University

Lincoln University was commissioned by the Avon-Otakaro Network (AvON) to estimate the value of the benefits of a ‘recreation reserve’ or ‘river park’ in the Avon River Residential Red Zone (ARRRZ). This research has demonstrated significant public desire and support for the development of a recreation reserve in the Avon River Residential Red Zone. Support is strongest for a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision, such as walking, cycling and water-based sporting and leisure activities. The research also showed support for a reserve that promotes and enables community interaction and wellbeing, and is evident in respondents’ desires for community gardens, regular festivals and markets, and the physical linking of the CBD with eastern suburbs through a green corridor. There is less support for children’s playgrounds, sports fields or open grassed areas, all of which could be considered as more typical of an urban park development. Benefits (willing to pay) to Christchurch residents (excluding tourists) of a recreation reserve could be as high as $35 million each year. Savings to public health costs could be as high as $50.3 million each year. The incorporation or restoration of various ecosystems services, including water quality improvements, flood mitigation and storm water management could yield a further $8.8 million ($19, 600) per hectare/year at 450 ha). Combined annual benefits of a recreational reserve in the ARRRZ are approximately $94.1 million per annum but this figure does not include potentially significant benefits from, for example, tourism, property equity gains in areas adjacent to the reserve, or the effects of economic rejuvenation in the East. Although we were not able to provide costing estimates for park attributes, this study does make available the value of benefits, which can be used as a guide to the scope of expenditure on development of each park attribute.

Research Papers, Lincoln University

The disastrous earthquakes that struck Christchurch in 2010 and 2011 seriously impacted on the individual and collective lives of Māori residents. This paper continues earlier, predominantly qualitative research on the immediate effects on Māori by presenting an analysis of a survey carried out 18 months after the most destructive event, on 22 February 2011. Using a set-theoretic approach, pathways to Māori resilience are identified, emphasising the combination of whānau connectivity and high incomes in those who have maintained or increased their wellbeing post-disaster. However, the results show that if resilience is used to describe a “bounce back” in wellbeing, Māori are primarily enduring the post-disaster environment. This endurance phase is a precursor to any resilience and will be of much longer duration than first thought. With continued uncertainty in the city and wider New Zealand economy, this endurance may not necessarily lead to a more secure environment for Māori in the city.

Research Papers, Lincoln University

‘Housing affordability’ has been a term used to refer to a problem that arises when the costs of housing are seen as being unreasonably high in relation to incomes. In the United Kingdom and Australia the local town planning systems have been used to address housing affordability issues. This response in countries that share New Zealand’s town and country planning history raised the question for this research of the local government response to housing affordability issues in the city of Christchurch, New Zealand. This research was undertaken during the fifth year after the 2010/2011 Canterbury earthquake series. Research conducted by the Centre for Housing Research Aotearoa New Zealand and the New Zealand Productivity Commission present quite different pictures of the housing affordability problem, suggest different solutions and indicate different roles for levels of government, the community housing sector and the housing market. The research undertaken for this dissertation aimed to address the question of the role of the state, through the lense of a local response to housing affordability issues, in the context of a central government response focused on land supply and reforming the Resource Management Act 1991.

Research Papers, Lincoln University

Knowledge of past climate variability is essential for understanding present and future climate trends. This study used Halocarpus biformis (pink pine) ring-width chronologies to investigate palaeotemperature history in Westland, New Zealand. The ensuing reconstruction is among the longest palaeoseries produced for New Zealand to date. It is in good agreement with other tree-ring-based records, and with instrumental (both local and hemispheric) data. Thirteen pink pine chronologies were developed. Ring-width measurements were detrended using the Regional Curve Standardisation method to retain as much low-frequency variance as possible. Crossdating revealed the existence of a strong common signal among trees. Inter-site comparison indicated that a common control mechanism affected tree growth not only within sites, but also across sites. To determine whether climate was the main factor that controlled the growth of pink pine in Westland, correlation and response function analyses were employed. Temperature, precipitation and the Southern Oscillation Index were tested for their relationship with tree growth. Mean monthly temperature was identified as the primary growth-limiting factor. Chronologies were positively correlated with temperature over an extended period (5-17 months), and climate response modelling showed that temperature explained 11-60% variance in the tree-ring data. The highest and most stable correlations occurred between tree growth and summer (January-March) temperatures. Tree-ring data from the six sites that contained the strongest temperature signal were combined, and the Westland Regional Chronology (WRC) was developed. The WRC was then used to reconstruct January-March temperatures back to A.D. 1480. The calibration model explained 43% of the variance in temperature, and all calibration and verification tests were passed at high levels of significance. The reconstruction showed that temperatures in Westland have been following a positive trend over the last 520 years. The coolest 25-year period was 1542-1566, while temperatures reached their maximum in 1966-1990. Spectral analysis of the Westland palaeotemperature record revealed cycles at periods of about 3, 5-6, 11, 14, 22, 45 and 125 years. This study also confirmed that climate response is species-dependent. A separate exercise, which compared two species from the same site, demonstrated that while pink pine's growth was mainly influenced by summer temperatures, Libocedrus bidwillii was affected by conditions at the beginning of the growing season. However, the temperature signal in Westland's Libocedrus bidwillii was insufficient to produce a reliable reconstruction. It might be because the climate signal in this species was obscured by disturbances, as was shown in the final section of this project. Frequent growth releases and suppressions implied that Libocedrus bidwillii integrated both major (Alpine Fault earthquakes) and minor (windthrow) disturbances in its ring widths. Pink pine, on the other hand, was not sensitive to disturbance, and was therefore a better indicator of palaeotemperatures in Westland. This research has strengthened the New Zealand network of chronology sites, and confirmed that pink pine has great dendroclimatic value. The last 520 years of temperature fluctuations were reconstructed with a high degree of fidelity - the model developed in this thesis is currently the most accurate estimate of a temperature-growth relationship in the country.

Research Papers, Lincoln University

This research provides an investigation into the impact on the North Island freight infrastructure, in the event of a disruption of the Ports of Auckland (POAL). This research is important to New Zealand, especially having experienced the Canterbury earthquake disaster in 2010/2011 and the current 2012 industrial action plaguing the POAL. New Zealand is a net exporter of a combination of manufactured high value goods, commodity products and raw materials. New Zealand’s main challenge lies in the fact of its geographical distances to major markets. Currently New Zealand handles approximately 2 million containers per annum, with a minimum of ~40% of those containers being shipped through POAL. It needs to be highlighted that POAL is classified as an import port in comparison to Port of Tauranga (POT) that has traditionally had an export focus. This last fact is of great importance, as in a case of a disruption of the POAL, any import consigned to the Auckland and northern region will need to be redirected through POT in a quick and efficient way to reach Auckland and the northern regions. This may mean a major impact on existing infrastructure and supply chain systems that are currently in place. This study is critical as an element of risk management, looking at how to mitigate the risk to the greater Auckland region. With the new Super City taking hold, the POAL is a fundamental link in the supply chain to the largest metropolitan area within New Zealand.

Research Papers, Lincoln University

Today there is interest in building resilient communities. Identifying and managing the risks of natural hazards with communities who face compounding hazards is challenging. Alpine ski areas provide a unique context to study this challenging and complex process. The traditional approach taken to manage natural hazards is discipline-centric and focuses on common (e.g. high probability low consequence) natural hazards such as avalanches. While this thesis acknowledges that the common approach is rational, it argues that we can extend our communities of practice to include rare (e.g. low probability / high consequence) natural hazards such as earthquakes. The dynamically complex nature of these ‘rare’ hazards limits our understanding about them, but by seeking and using the lived experiences of people in mountain communities some knowledge can be gained to help improve our understanding of how to adapt. This study focuses on such an approach in the context of alpine ski areas prone to earthquakes as a first step toward identifying key policy opportunities for hazard mitigation in general. The contributions can be broken down into methodological, contextual, and theoretical pursuits, as well as opportunities for improving future research. A development mixed method triangulated approach was justified because the research problem (i.e. earthquakes in ski areas) has had little consideration. The context provided the opportunity to test the integration of methods while dealing with the challenges of research in a novel context. Advancement to fuzzy cognitive mapping was achieved through the use of unsupervised neural networks (Self-organizing Maps or Kohonen Maps). The framework applied in the multi-site case study required a synthesis of current approaches, advances to methods and a functional use of cultural theory. Different approaches to participatory policy development were reviewed to develop a research protocol that was accessible. Cultural theory was selected as a foundation for the thesis because of its’ preference for plural rationalities from five ways of organizing. Moreover, the study undertook a shift away from the dichotomy of ‘methodological individualism’ and ‘methodological collectivism’ and instead chose the dividual (i.e. social solidarities that consist of culural biases, behavioral strategies and social relations) as a consistent unit of analysis despite three different methodologies including: field studies, qualitative interviews, and fuzzy cognitive maps. In this sense, the thesis sought to move away from ‘elegant solutions’ from singular solidarities or methods toward a research philosophy that sustains requisite variety and clumsy solutions. Overall the approach was a trandisciplinary framework that is a step toward sustainable hazards mitigation. The results indicate that the selections of risks and adaptation strategies associated with the in-situ hazards are driven by roles that managers, workers, and riders play in the context. Additionally, fuzzy cognitive maps were used as an extension of qualitative interviews and demonstrated the potential for power struggles that may arise between participant groups when considering strategies for preparation, response and recovery. Moreover, the results stress that prolonged engagement with stakeholders is necessary to improve the policy development process. Some comments are made on the compatibility condition of congruence between cultural biases, behavioural strategies, and social relations. As well, inclusion of the hermit/autonomous solidarities is stressed as a necessary component of future applications of cultural theory. The transdisciplinary mixed-method framework is an approach that can be transferred to many other vital areas of research where integration is desirable.

Research Papers, Lincoln University

Following the 2010 and 2011 earthquakes Christchurch is undergoing extensive development on the periphery of the city. This has been driven in part by the large numbers of people who have lost their homes. Prior to the earthquakes, Christchurch was already experiencing placeless subdivisions and now these are being rolled out rapidly thanks to the efficiency of a formula that has been embraced by the Council, developers and the public alike. However, sprawling subdivisions have a number of issues including inefficient land use, limited housing types, high dependence on motor vehicles and low levels of resilience and no sense of place. Sense of place is of particular interest due to its glaring absence from new subdivisions and its growing importance in the literature. Research shows that sense of place has benefits to our feeling of belonging, well-being, and self-identity, particularly following a disaster. It improves the resilience and sustainability of our living environment and fosters a connection to the landscape thereby making us better placed to respond to future changes. Despite these benefits, current planning models such as new urbanism and transit-oriented design tend to give sense of place a low priority and as a result it can get lost. Given these issues, the focus of this research is “can landscape driven sense of place drive subdivision design without compromising on other urban planning criteria to produce subdivisions that address the issues of sprawl, as well as achieving the benefits associated with a strong sense of place that can improve our overall quality of life?” Answering this question required a thorough review of current urban planning and sense of place literature. This was used to critique existing subdivisions to gain a thorough understanding of the issues. The outcomes of this led to extensive design exploration which showed that, not only is it possible to design a subdivision with sense of place as the key driver but by doing this, the other urban planning criteria become easier to achieve.

Research Papers, Lincoln University

Prognostic modelling provides an efficient means to analyse the coastal environment and provide effective knowledge for long term urban planning. This paper outlines how the use of SWAN and Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution through hydrodynamic forcing for the Greater Christchurch coastal environment. This research followed the data integration techniques of Silva and Taborda (2012) and utilises their beach morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements are currently being complied with when applying the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those requirements. This is because coastal hazard risk has not been thoroughly quantified by the installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, the Christchurch City Council’s (CCC) flood management area does provide an extent to which managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme events such as storm surge given these future predictions. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion within a small spatial scale due to the river discharge. There is domination of the marine environment over the river system determined by the lack of generation of a distinct river delta, and river channel has not formed within the intertidal zone clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis effectively and the efficiency of that performance is determined by the computational operating system.

Research Papers, Lincoln University

Saltwater Forest is a Dacrydium cupressinum-dominated lowland forest covering 9000 ha in south Westland, South Island, New Zealand. Four thousand hectares is managed for sustainable production of indigenous timber. The aim of this study was to provide an integrated analysis of soils, soil-landform relationships, and soil-vegetation relationships at broad and detailed scales. The broad scale understandings provide a framework in which existing or future studies can be placed and the detailed studies elucidate sources of soil and forest variability. Glacial landforms dominate. They include late Pleistocene lateral, terminal and ablation moraines, and outwash aggradation and degradation terraces. Deposits and landforms from six glacial advances have been recognised ranging from latest Last (Otira) Glaciation to Penultimate (Waimea) Glaciation. The absolute ages of landforms were established by analysis of the thickness and soil stratigraphy of loess coverbeds, augmented with radiocarbon dating and phytolith and pollen analysis. In the prevailing high rainfall of Westland soil formation is rapid. The rate of loess accretion in Saltwater Forest (ca. 30 mm ka⁻¹) has been low enough that soil formation and loess accretion took place contemporaneously. Soils formed in this manner are known as upbuilding soils. The significant difference between upbuilding pedogenesis and pedogenesis in a topdown sense into an existing sediment body is that each subsoil increment of an upbuilding soil has experienced processes of all horizons above. In Saltwater Forest subsoils of upbuilding soils are strongly altered because they have experienced the extremely acid environment of the soil surface at some earlier time. Some soil chronosequence studies in Westland have included upbuilding soils formed in loess as the older members of the sequence. Rates and types of processes inferred from these soils should be reviewed because upbuilding is a different pedogenic pathway to topdown pedogenesis. Landform age and morphology were used as a primary stratification for a study of the soil pattern and nature of soil variability in the 4000 ha production area of Saltwater Forest. The age of landforms (> 14 ka) and rapid soil formation mean that soils are uniformly strongly weathered and leached. Soils include Humic Organic Soils, Perch-gley Podzols, Acid Gley Soils, Allophanic Brown Soils, and Orthic or Pan Podzols. The major influence on the nature of soils is site hydrology which is determined by macroscale features of landforms (slope, relief, drainage density), mesoscale effects related to position on landforms, and microscale influences determined by microtopography and individual tree effects. Much of the soil variability arises at microscales so that it is not possible to map areas of uniform soils at practical map scales. The distribution of soil variability across spatial scales, in relation to the intensity of forest management, dictates that it is most appropriate to map soil complexes with boundaries coinciding with landforms. Disturbance of canopy trees is an important agent in forest dynamics. The frequency of forest disturbance in the production area of Saltwater Forest varies in a systematic way among landforms in accord with changes in abundance of different soils. The frequency of forest turnover is highest on landforms with the greatest abundance of extremely poorly-drained Organic Soils. As the abundance of better-drained soils increases the frequency of forest turnover declines. Changes in turnover frequency are reflected in the mean size and density of canopy trees (Dacrydium cupressinum) among landforms. Terrace and ablation moraine landforms with the greatest abundance of extremely poorly-drained soils have on average the smallest trees growing most densely. The steep lateral moraines, characterised by well drained soils, have fewer, larger trees. The changes manifested at the landform scale are an integration of processes operating over much shorter range as a result of short-range soil variability. The systematic changes in forest structure and turnover frequency among landforms and soils have important implications for sustainable forest management.

Research Papers, Lincoln University

Mixed conifer, beech and hardwood forests are relatively common in Aotearoa/New Zealand, but are not well studied. This thesis investigates the coexistence, regeneration dynamics and disturbance history of a mixed species forest across an environmental gradient of drainage and soil development in north Westland. The aim was to investigate whether conifers, beech and non-beech hardwood species were able to coexist on surfaces that differed in their underlying edaphic conditions, and if so to understand the mechanisms that influenced their regeneration on both poorly drained and well drained soils. The site selected was an area of high tree species diversity on a lowland 0.8 km² post-glacial terrace at the base of Mount Harata in the Grey River Valley. My approach was to use forest stand history reconstruction at two spatial scales: an intensive within-plot study of stand dynamics (chapter 1) and a whole-landform approach (chapter 2) that examined whether the dynamics identified at the smaller within-plot scale reflected larger patterns across the terrace. In chapter 1, three large permanent plots (0.3-0.7 ha) were placed at different points along the drainage gradient, one plot situated in each of the mainly well-drained, poorly drained and very poorly drained areas along the terrace. Information was gathered on species age and size structures, spatial distributions of tree ages, species interactions, microsite establishment preferences, patterns of stand mortality, and disturbance history in each plot. There were differences in stand structure, composition and relative abundance of species found between the well drained plot and the two poorer drained plots. On the well drained site conifers were scarce, the beeches Nothofagus fusca and N. menziesii dominated the canopy, and in the subcanopy the hardwood species Weinmannia racemosa and Quintinia acutifolia were abundant. As drainage became progressively poorer, the conifers Dacrydium cupressinum and Dacrycarpus dacrydioides became more abundant and occupied the emergent tier over a beech canopy. The hardwoods W. racemosa and Q. acutifolia became gradually less abundant in the subcanopy, whereas the hardwood Elaeocarpus hookerianus became more so. In the well drained plot, gap partitioning for light between beeches and hardwoods enabled coexistence in response to a range of different sized openings resulting from disturbances of different extent. In the two more poorly drained plots, species also coexisted by partitioning microsite establishment sites according to drainage. There were several distinct periods where synchronous establishment of different species occurred in different plots, suggesting there were large disturbances: c. 100yrs, 190-200 yrs, 275-300 yrs and 375-425 yrs ago. Generally after the same disturbance, different species regenerated in different plots reflecting the underlying drainage gradient. However, at the same site after different disturbances, different sets of species regenerated, suggesting the type and extent of disturbances and the conditions left behind influenced species regeneration at some times but not others. The regeneration of some species (e.g., N. fusca in the well-drained plot, and Dacrydium in the poorer drained plots) was periodic and appeared to be closely linked to these events. In the intervals between these disturbances, less extensive disturbances resulted in the more frequent N. menziesii and especially hardwood regeneration. The type of tree death caused by different disturbances favoured different species, with dead standing tree death favouring the more shade-tolerant N. menziesii and hardwoods, whereas uprooting created a mosaic of microsite conditions and larger gap sizes that enabled Dacrycarpus, N. fusca and E. hookerianus to maintain themselves in the poorly drained areas. In chapter 2, 10 circular plots (c. 0.12 ha) were placed in well drained areas and 10 circular plots (c. 0.2 ha) in poorly drained plots to collect information on species population structures and microsite preferences. The aims were to reconstruct species' regeneration responses to a range of disturbances of different type and extent across the whole terrace, and to examine whether there were important differences in the effects of these disturbances. At this landform scale, the composition and relative abundances of species across the drainage gradient reflected those found in chapter 1. There were few scattered conifers in well drained areas, despite many potential regeneration opportunities created from a range of different stand destroying and smaller scale disturbances. Three of the four periods identified in chapter 1 reflected distinct terrace-wide periods of regeneration 75-100 yrs, 200-275 yrs and 350-450 yrs ago, providing strong evidence of periodic large, infrequent disturbances that occurred at intervals of 100-200 yrs. These large, infrequent disturbances have had a substantial influence in determining forest history, and have had long term effects on forest structure and successional processes. Different large, infrequent disturbances had different effects across the terrace, with the variability in conditions that resulted enabling different species to regenerate at different times. For example, the regeneration of distinct even-aged Dacrydium cohorts in poorly drained areas was linked to historical Alpine Fault earthquakes, but not to more recent storms. The variation in the intensity of different large, infrequent disturbances at different points along the environmental drainage gradient, was a key factor influencing the scale of impacts. In effect, the underlying edaphic conditions influenced species composition along the drainage gradient and disturbance history regulated the relative abundances of species. The results presented here further emphasise the importance of large scale disturbances as a mechanism that allows coexistence of different tree species in mixed forest, in particular for the conifers Dacrydium, Dacrycarpus and the beech N. fusca, by creating much of the environmental variation to which these species responded. This study adds to our understanding of the effects of historical earthquakes in the relatively complex forests of north Westland, and further illustrates their importance in the Westland forest landscape as the major influential disturbance on forest pattern and history. These results also further develop the 'two-component' model used to describe conifer/angiosperm dynamics, by identifying qualitative differences in the impacts of different large, infrequent disturbances across an environmental gradient that allowed for coexistence of different species. In poorer drained areas, these forests may even be thought of as 'three-component' systems with conifers, beeches and hardwoods exhibiting key differences in their regeneration patterns after disturbances of different type and extent, and in their microsite preferences.