There is strong consensus in the civil defence and emergency management literature that public participation is essential for a 'good' recovery. However, there is a paucity of research detailing how this community-led planning should be carried out in the real world. There are few processes or timelines for communities to follow when wanting to plan for themselves, nor is there a great deal of advice for communities who want to plan for their own recovery. In short, despite this consensus that community involvement is desireable, there is very little information available as to the nature of this involvement or how communities might facilitate this. It is simply assumed that communities are willing and able to participate in the recovery process and that recovery authorities will welcome, encourage, and enable this participation. This is not always the case, and the result is that community groups can be left feeling lost and ineffective when trying to plan for their own recovery.
In attempting to address this gap, my study contributes to a better understanding of community involvement in recovery planning, based on research with on particular a community group (SPRIG), who has undertaken their own form of community-led planning in a post-disaster environment. Through group observations and in-depth interviews with members of SPRIG, I was able to identify various roles for such groups in the post-disaster recovery process. My research also contributes to an enhanced understanding of the process a community group might follow to implement their own form of post-disaster recovery planning, with the main point being that any planning should be done side by side with local authorities. Finally, I discovered that a community group will face organisational, community and institutional challenges when trying to plan for their area; however, despite these challenges, opportunities exist, such as the chance to build a better future.
Environmental assessment in New Zealand is governed by the provisions of the Resource Management Act (RMA) 1991. The Act requires persons wishing to undertake certain activities to apply for resource consent from their local or regional council - a procedure termed the Resource Consent Process. The key component of a resource consent application is an Assessment of Environmental Effects (AEE) report; a statement of the environmental effects of a proposed activity.
Problems arise when environmental assessments are complicated by uncertain and abnormal circumstances such as natural hazards. Natural hazards (including earthquakes, floods, tsunami, and coastal erosion) can be catastrophic to an environment. If hazards are not avoided or successfully mitigated, they can result in serious consequences to proposed development and to the environment which the proposal relates. The aim of this study is to assess the adequacy of the resource consent process (as outlined in the Resource Management Act 1991) for dealing with proposed development affected by natural hazards.
This study reviews the context of the resource consent process for dealing with natural hazards to identify potential issues in the assessment process. Guidance criteria for assessing natural hazards (termed Natural Hazard Assessment) are developed to evaluate against two resource consent applications affected by natural hazards. The findings of the consent process review and case study evaluation are discussed to determine the adequacy of the consent process for dealing with natural hazards.
From the review of the consent process it was evident that the process has a number of problems for accommodating natural hazards into the assessment. Although many important traits are provided for in the process, such traits are not always reflected in environmental assessments.
Evaluation of two resource consent applications against the process of Natural Hazard Assessment (NHA) showed that these consent applications did not adequately detail key information relating to natural hazards. Many problems evident in these applications were not amended by the Consent Authorities in the review process and subsequently consent was granted to information-deficient applications. Problematic issues identified in this study include:
• A distinct lack of guidance (legal or otherwise) for the applicant and Consent Authority regarding the boundaries of inclusion of an effect;
• Deficiencies in planning documents are reflected in AEE reports, the review of the consent application and in the end-decision;
• Under-utilisation of "experts" throughout the consent process;
• Minimal identification and account for the degree of uncertainty throughout the consent process;
• Resource consents are being granted even though information in consent applications, and the means for assessing the information is deficient.
These issues reflect that decisions are not being made based on all elements involved in a potential hazard. Subsequently, the resource consent process is not adequate for dealing with all aspects of natural hazards.
The Natural Hazard Assessment process provides educated assessment criteria to assess development affected by natural hazards. By accounting for the problems evident in the consent process, the introduction of a three-tier identification, risk and vulnerability assessment, and evaluation process to account for uncertainties, Natural Hazard Assessment provides a platform for a thorough assessment of natural hazards. The application of the principles of Natural Hazard Assessment to the consent applications affected by natural hazards showed that many key issues were not covered in the assessment under the consent process.
The nature of a natural event is that one may not occur in a given region over many lifetimes, however they will occur at some stage and planning and environmental assessment needs to provide for the associated hazards. Implementation of Natural Hazard Assessment is needed to help provide answers for the problems experienced in the resource consent process. Natural Hazard Assessment would allow decision-makers to make informed judgements on the situation at hand, leading to better planning and land-use options.
Change to current practice is needed, as following the current path of environmental assessment will be the hazard in the end.
Tourism is New Zealand’s fourth largest industry, providing jobs for thousands of New
Zealanders and significant foreign capital for the nation’s economy. Of concern to ministry and industry
decision makers is the “spatial yield” of these tourists which takes into account the spatial and temporal
contributions of their movements in terms of economic, cultural and environmental impacts. We have
developed an agent-based model of tourism movements to simulate these impacts and to allow for the
evaluation of different scenarios (such as increases in petrol prices or variations in currency exchange rates)
on the behaviours of those tourists. In order to develop realistic and grounded heuristics for the model,
interview protocols were developed in order to identify the key drivers in tourists’ decision making process.
The paper examines community benefits provided by an established community garden following a major earthquake and discusses possible implications for community garden planning and design in disaster-prone cities. Recent studies show that following extreme storm events community gardens can supply food, enhance social empowerment, provide safe gathering spots, and restorative practices, to remind people of normality. However, the beneficial role played by community gardens following earthquakes is less well known. To fill this gap, the study examines the role played by a community garden in Christchurch, New Zealand, following the 2010/2011 Canterbury Earthquakes. The garden's role is evaluated based on a questionnaire-based survey and in-depth interviews with gardeners, as well as on data regarding the garden use before and after the earthquakes. Findings indicate the garden helped gardeners cope with the post-quake situation. The garden served as an important place to de-stress, share experiences, and gain community support. Garden features that reportedly supported disaster recovery include facilities that encourage social interaction and bonding such as central meeting and lunch places and communal working areas.
An emerging water crisis is on the horizon and is poised to converge with several other impending problems in the 21st century. Future uncertainties such as climate change, peak oil and peak water are shifting the international focus from a business as usual approach to an emphasis on sustainable and resilient strategies that better meet these challenges. Cities are being reimagined in new ways that take a multidisciplinary approach, decompartmentalising functions and exploring ways in which urban systems can share resources and operate more like natural organisms. This study tested the landscape design implications of wastewater wetlands in the urban environment and evaluated their contribution to environmental sustainability, urban resilience and social development. Black and grey water streams were the central focus of this study and two types of wastewater wetlands, tidal flow (staged planning) and horizontal subsurface flow wetlands were tested through design investigations in the earthquake-affected city of Christchurch, New Zealand. These investigations found that the large area requirements of wastewater wetlands can be mitigated through landscape designs that enhance a matrix of open spaces and corridors in the city.
Wastewater wetlands when combined with other urban and rural services such as food production, energy generation and irrigation can aid in making communities more resilient. Landscape theory suggests that the design of wastewater wetlands must meet cultural thresholds of beauty and that the inclusion of waste and ecologies in creatively designed landscapes can deepen our emotional connection to nature and ourselves.
Please contact supervisor Lin Roberts at Lincoln University to request a copy of this dissertation to read.Cities around the world are becoming greener, with many striving to make their cities as green as possible. Christchurch was devastated by an Earthquake in 2011, which resulted in many fatalities. Though this impacted the city negatively, this sad event was used as an opportunity for the broken city to become a better one. The Christchurch City Council (CCC) ran an exercise called ‘Share an Idea’, which asked the public what they wanted the new city to look like. The main theme extrapolated by researchers was that people wanted the city to be greener. A draft plan was created by the CCC but was deemed not good enough and replaced by a new plan called the Blueprint Plan created by the government. Through the process of public consultation to the finalized plan and the implementation of the finalized plan, there were many changes made to the inclusion of nature into Central Christchurch’s urban regeneration. The aim of this research is to assess the role of nature in the urban regeneration of Christchurch, by evaluating the recovery process, and comparing the level of greenness the public wanted by looking at what they said in Share an Idea, and then seeing how that translated into the proposed plans, and then finally looking at what is being implemented.
Mitigating the cascade of environmental damage caused by the movement of excess reactive nitrogen (N) from land to sea is currently limited by difficulties in precisely and accurately measuring N fluxes due to variable rates of attenuation (denitrification) during transport. This thesis develops the use of the natural abundance isotopic composition of nitrate (δ15N and δ18O of NO₃-) to integrate the spatialtemporal variability inherent to denitrification, creating an empirical framework for evaluating attenuation during land to water NO₃- transfers. This technique is based on the knowledge that denitrifiers kinetically discriminate against 'heavy' forms of both N and oxygen (O), creating a parallel enrichment in isotopes of both species as the reaction progresses. This discrimination can be quantitatively related to NO₃- attenuation by isotopic enrichment factors (εdenit). However, while these principles are understood, use of NO₃- isotopes to quantify denitrification fluxes in non-marine environments has been limited by, 1) poor understanding of εdenit
variability, and, 2) difficulty in distinguishing the extent of mixing of isotopically distinct sources from the
imprint of denitrification. Through a combination of critical literature analysis, mathematical modelling, mesocosm to field scale experiments, and empirical studies on two river systems over distance and time, these short comings are parametrised and a template for future NO₃- isotope based attenuation measurements
outlined.
Published εdenit values (n = 169) are collated in the literature analysis presented in Chapter 2. By evaluating these values in the context of known controllers on the denitrification process, it is found that the magnitude of εdenit, for both δ15N and δ18O, is controlled by, 1) biology, 2) mode of transport through the denitrifying zone (diffusion v. advection), and, 3) nitrification (spatial-temporal distance between nitrification and denitrification). Based on the outcomes of this synthesis, the impact of the three factors identified as controlling εdenit are quantified in the context of freshwater systems by combining simple mathematical modelling and lab incubation studies (comparison of natural variation in biological versus physical expression). Biologically-defined εdenit, measured in sediments collected from four sites along a temperate stream and from three tropical submerged paddy fields, varied from -3‰ to -28‰ depending on the site’s antecedent carbon content. Following diffusive transport to aerobic surface water, εdenit was found to
become more homogeneous, but also lower, with the strength of the effect controlled primarily by diffusive distance and the rate of denitrification in the sediments. I conclude that, given the variability in fractionation dynamics at all levels, applying a range of εdenit from -2‰ to -10‰ provides more accurate measurements of attenuation than attempting to establish a site-specific value. Applying this understanding of denitrification's fractionation dynamics, four field studies were conducted to measure denitrification/ NO₃- attenuation across diverse terrestrial → freshwater systems. The development of NO₃- isotopic signatures (i.e., the impact of nitrification, biological N fixation, and ammonia volatilisation on the isotopic 'imprint' of denitrification) were evaluated within two key agricultural regions: New Zealand grazed pastures (Chapter 4) and Philippine lowland submerged rice production (Chapter 5). By measuring the isotopic composition of soil ammonium, NO₃- and volatilised ammonia following the bovine urine deposition, it was determined that the isotopic composition of NO₃ - leached from grazed pastures is defined by the balance between nitrification and denitrification, not ammonia volatilisation. Consequently, NO₃- created within pasture systems was predicted to range from +10‰ (δ15N)and -0.9‰ (δ18O) for non-fertilised fields (N limited) to -3‰ (δ15N) and +2‰ (δ18O) for grazed fertilised fields (N saturated). Denitrification was also the dominant determinant of NO₃- signatures in the Philippine rice paddy. Using a site-specific εdenit for the paddy, N inputs versus attenuation were able to be calculated, revealing that >50% of available N in the top 10 cm of soil was denitrified during land preparation, and >80% of available N by two weeks post-transplanting. Intriguingly, this denitrification was driven by rapid
NO₃- production via nitrification of newly mineralised N during land preparation activities.
Building on the relevant range of εdenit established in Chapters 2 and 3, as well as the soil-zone confirmation that denitrification was the primary determinant of NO₃- isotopic composition, two long-term
longitudinal river studies were conducted to assess attenuation during transport. In Chapter 6, impact and recovery dynamics in an urban stream were assessed over six months along a longitudinal impact gradient using measurements of NO₃- dual isotopes, biological populations, and stream chemistry. Within 10 days of the catastrophic Christchurch earthquake, dissolved oxygen in the lowest reaches was <1 mg l⁻¹, in-stream denitrification accelerated (attenuating 40-80% of sewage N), microbial biofilm communities changed, and several benthic invertebrate taxa disappeared. To test the strength of this method for tackling the diffuse, chronic N loading of streams in agricultural regions, two years of longitudinal measurements of NO₃- isotopes were collected. Attenuation was negatively correlated with NO₃- concentration, and was highly
dependent on rainfall: 93% of calculated attenuation (20 kg NO₃--N ha⁻¹ y⁻¹) occurred within 48 h of rainfall.
The results of these studies demonstrate the power of intense measurements of NO₃- stable isotope for distinguishing temporal and spatial trends in NO₃ - loss pathways, and potentially allow for improved catchment-scale management of agricultural intensification. Overall this work now provides a more cohesive understanding for expanding the use of NO₃- isotopes measurements to generate accurate understandings of the controls on N losses. This information is becoming increasingly important to predict ecosystem response to future changes, such the increasing agricultural intensity needed to meet global food demand, which is occurring synergistically with unpredictable global climate change.
The increase in urban population has required cities to rethink their strategies for minimising greenhouse gas impacts and adapting to climate change. While urban design and planning policy have been guided by principles such as walkability (to reduce the dependence on cars) and green infrastructure (to enhance the quality of open spaces to support conservation and human values), there have been conflicting views on what spatial strategies will best prepare cities for a challenging future. Researchers supporting compact cities based upon public Transit Oriented Development have claimed that walkability, higher density and mixed-uses make cities more sustainable (Owen, 2009) and that, while green spaces in cities are necessary, they are dull in comparison with shopfronts and street vendors (Speck, 2012, p 250). Other researchers claim that green infrastructure is fundamental to improving urban sustainability and attracting public space users with improved urban comfort, consequently encouraging walkability (Pitman and Ely, 2013). Landscape architects tend to assume that ‘the greener the better’; however, the efficiency of urban greenery in relation to urban comfort and urbanity depends on its density, distribution and the services provided. Green infrastructure can take many forms (from urban forests to street trees) and provide varied services (amended microclimate, aesthetics, ecology and so forth). In this paper, we evaluate the relevance of current policy in Christchurch regarding both best practice in green infrastructure and urban comfort (Tavares, 2015). We focus on the Christchurch Blueprint for rebuilding the central city, and critically examine the post-earthquake paths the city is following regarding its green and grey infrastructures and the resulting urban environment. We discuss the performance and appropriateness of the current Blueprint in post-earthquake Christchurch, particularly as it relates to the challenges that climate change is creating for cities worldwide.
Orientation: Large-scale events such as disasters, wars and pandemics disrupt the economy by diverging resource allocation, which could alter employment growth within the economy during recovery.
Research purpose: The literature on the disaster–economic nexus predominantly considers the aggregate performance of the economy, including the stimulus injection. This research assesses the employment transition following a disaster by removing this stimulus injection and evaluating the economy’s performance during recovery.
Motivation for the study: The underlying economy’s performance without the stimulus’ benefit remains primarily unanswered. A single disaster event is used to assess the employment transition to guide future stimulus response for disasters.
Research approach/design and method: Canterbury, New Zealand, was affected by a series of earthquakes in 2010–2011 and is used as a single case study. Applying the historical construction–economic relationship, a counterfactual level of economic activity is quantified and compared with official results. Using an input–output model to remove the economy-wide impact from the elevated activity reveals the performance of the underlying economy and employment transition during recovery.
Main findings: The results indicate a return to a demand-driven level of building activity 10 years after the disaster. Employment transition is characterised by two distinct periods. The first 5 years are stimulus-driven, while the 5 years that follow are demand-driven from the underlying economy. After the initial period of elevated building activity, construction repositioned to its long-term level near 5% of value add. Practical/managerial implications: The level of building activity could be used to confidently assess the performance of regional economies following a destructive disaster. The study results argue for an incentive to redevelop the affected area as quickly as possible to mitigate the negative effect of the destruction and provide a stimulus for the economy. Contribution/value-add: This study contributes to a growing stream of regional disaster economics research that assesses the economic effect using a single case study.
The New Zealand Kellogg Rural Leaders Programme develops emerging agribusiness leaders to help shape the future of New Zealand agribusiness and rural affairs. Lincoln University has been involved with this leaders programme since 1979 when it was launched with a grant from the Kellogg Foundation, USA.At 4.35am on 4th September 2010, Canterbury was hit by an earthquake measuring 7.1 on the
Richter scale. On 22nd February 2011 and 13th June 2011 a separate fault line approximately
35km from the first, ruptured to inflict two further earthquakes measuring 6.3 and 6.0
respectively. As a direct result of the February earthquake, 181 people lost their lives. Some
commentators have described this series of earthquakes as the most expensive global
insurance event of all time.
These earthquakes and the more than 7000 associated aftershocks have had a significant
physical impact on parts of Canterbury and virtually none on others. The economic, social and
emotional impacts of these quakes spread across Canterbury and beyond.
Waimakariri district, north of Christchurch, has reflected a similar pattern, with over 1400 houses
requiring rebuild or substantial repair, millions of dollars of damage to infrastructure, and
significant social issues as a result. The physical damage in Waimakiriri District was
predominately in parts of Kaiapoi, and two small beach settlements, The Pines and Kairaki
Beach with pockets elsewhere in the district. While the balance of the district is largely
physically untouched, the economic, social, and emotional shockwaves have spread across the
district. Waimakariri district consists of two main towns, Rangiora and Kaiapoi, a number of
smaller urban areas and a larger rural area. It is considered mid-size in the New Zealand local
government landscape.
This paper will explore the actions and plans of Waimakiriri District Council (WDC) in the
Emergency Management Recovery programme to provide context to allow a more detailed
examination of the planning processes prior to, and subsequent to the earthquakes. This study
looked at documentation produced by WDC, applicable legislation and New Zealand
Emergency Management resources and other sources. Key managers and elected
representatives in the WOC were interviewed, along with a selection of governmental and nongovernmental
agency representatives. The interview responses enable understanding of how
central Government and other local authorities can benefit from these lessons and apply them
to their own planning.
It is intended that this paper will assist local government organisations in New Zealand to
evaluate their planning processes in light of the events of 2010/11 in Canterbury and the
lessons from WDC.
Globally, the maximum elevations at which treelines are observed to occur coincide with a 6.4 °C soil isotherm. However, when observed at finer scales, treelines display a considerable degree of spatial complexity in their patterns across the landscape and are often found occurring at lower elevations than expected relative to the global-scale pattern. There is still a
lack of understanding of how the abiotic environment imposes constraints on treeline patterns, the scales at which different effects are acting, and how these effects vary over large spatial extents. In this thesis, I examined abrupt Nothofagus treelines across seven degrees of
latitude in New Zealand in order to investigate two broad questions: (1) What is the nature and extent of spatial variability in Nothofagus treelines across the country? (2) How is this variation associated with abiotic variation at different spatial scales? A range of GIS, statistical, and atmospheric modelling methods were applied to address these two questions.
First, I characterised Nothofagus treeline patterns at a 15x15km scale across New Zealand using a set of seven, GIS-derived, quantitative metrics that describe different aspects of treeline position, shape, spatial configuration, and relationships with adjacent vegetation.
Multivariate clustering of these metrics revealed distinct treeline types that showed strong spatial aggregation across the country. This suggests a strong spatial structuring of the abiotic environment which, in turn, drives treeline patterns. About half of the multivariate treeline
metric variation was explained by patterns of climate, substrate, topographic and disturbance variability; on the whole, climatic and disturbance factors were most influential.
Second, I developed a conceptual model that describes how treeline elevation may
vary at different scales according to three categories of effects: thermal modifying effects, physiological stressors, and disturbance effects. I tested the relevance of this model for Nothofagus treelines by investigating treeline elevation variation at five nested scales (regional to local) using a hierarchical design based on nested river catchments. Hierarchical linear modelling revealed that the majority of the variation in treeline elevation resided at the broadest, regional scale, which was best explained by the thermal modifying effects of solar radiation, mountain mass, and differences in the potential for cold air ponding. Nonetheless, at finer scales, physiological and disturbance effects were important and acted to modify the regional trend at these scales. These results suggest that variation in abrupt treeline elevations
are due to both broad-scale temperature-based growth limitation processes and finer-scale stress- and disturbance-related effects on seedling establishment.
Third, I explored the applicability of a meso-scale atmospheric model, The Air
Pollution Model (TAPM), for generating 200 m resolution, hourly topoclimatic data for
temperature, incoming and outgoing radiation, relative humidity, and wind speeds. Initial assessments of TAPM outputs against data from two climate station locations over seven years showed that the model could generate predictions with a consistent level of accuracy for both sites, and which agreed with other evaluations in the literature. TAPM was then used to generate data at 28, 7x7 km Nothofagus treeline zones across New Zealand for January
(summer) and July (winter) 2002. Using mixed-effects linear models, I determined that both
site-level factors (mean growing season temperature, mountain mass, precipitation,
earthquake intensity) and local-level landform (slope and convexity) and topoclimatic factors (solar radiation, photoinhibition index, frost index, desiccation index) were influential in
explaining variation in treeline elevation within and among these sites. Treelines were
generally closer to their site-level maxima in regions with higher mean growing season
temperatures, larger mountains, and lower levels of precipitation. Within sites, higher
treelines were associated with higher solar radiation, and lower photoinhibition and
desiccation index values, in January, and lower desiccation index values in July. Higher treelines were also significantly associated with steeper, more convex landforms.
Overall, this thesis shows that investigating treelines across extensive areas at multiple study scales enables the development of a more comprehensive understanding of treeline variability and underlying environmental constraints. These results can be used to formulate new hypotheses regarding the mechanisms driving treeline formation and to guide the optimal choice of field sites at which to test these hypotheses.