Search

found 8 results

Research Papers, Lincoln University

Lincoln University was commissioned by the Avon-Otakaro Network (AvON) to estimate the value of the benefits of a ‘recreation reserve’ or ‘river park’ in the Avon River Residential Red Zone (ARRRZ). This research has demonstrated significant public desire and support for the development of a recreation reserve in the Avon River Residential Red Zone. Support is strongest for a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision, such as walking, cycling and water-based sporting and leisure activities. The research also showed support for a reserve that promotes and enables community interaction and wellbeing, and is evident in respondents’ desires for community gardens, regular festivals and markets, and the physical linking of the CBD with eastern suburbs through a green corridor. There is less support for children’s playgrounds, sports fields or open grassed areas, all of which could be considered as more typical of an urban park development. Benefits (willing to pay) to Christchurch residents (excluding tourists) of a recreation reserve could be as high as $35 million each year. Savings to public health costs could be as high as $50.3 million each year. The incorporation or restoration of various ecosystems services, including water quality improvements, flood mitigation and storm water management could yield a further $8.8 million ($19, 600) per hectare/year at 450 ha). Combined annual benefits of a recreational reserve in the ARRRZ are approximately $94.1 million per annum but this figure does not include potentially significant benefits from, for example, tourism, property equity gains in areas adjacent to the reserve, or the effects of economic rejuvenation in the East. Although we were not able to provide costing estimates for park attributes, this study does make available the value of benefits, which can be used as a guide to the scope of expenditure on development of each park attribute.

Research Papers, Lincoln University

The 2010 and 2011 earthquakes have had a devastating impact on the city of Christchurch, New Zealand. The level of destruction has been especially evident in the central business district where it has been estimated over 1000 buildings have already been or will eventually require demolition. Although, contrary to expectations, most of the fatalities were in relatively modern buildings, the Victorian and Edwardian era building stock was especially hard hit in terms of property damage. Unfortunately this era and style of building were also the focus of the most successful inner city revitalisation projects to date. A major research project is now underway examining the impact on the earthquakes on one of these revitalisation areas. The first step is to examine the international literature on similar inner city revitalisation or gentrification areas and in particular the characteristics of owners and occupiers attracted to this type of environment. This is the focus of this paper.

Research Papers, Lincoln University

Liquefaction features and the geologic environment in which they formed were carefully studied at two sites near Lincoln in southwest Christchurch. We undertook geomorphic mapping, excavated trenches, and obtained hand cores in areas with surficial evidence for liquefaction and areas where no surficial evidence for liquefaction was present at two sites (Hardwick and Marchand). The liquefaction features identified include (1) sand blows (singular and aligned along linear fissures), (2) blisters or injections of subhorizontal dikes into the topsoil, (3) dikes related to the blows and blisters, and (4) a collapse structure. The spatial distribution of these surface liquefaction features correlates strongly with the ridges of scroll bars in meander settings. In addition, we discovered paleoliquefaction features, including several dikes and a sand blow, in excavations at the sites of modern liquefaction. The paleoliquefaction event at the Hardwick site is dated at A.D. 908-1336, and the one at the Marchand site is dated at A.D. 1017-1840 (95% confidence intervals of probability density functions obtained by Bayesian analysis). If both events are the same, given proximity of the sites, the time of the event is A.D. 1019-1337. If they are not, the one at the Marchand site could have been much younger. Taking into account a preliminary liquefaction-triggering threshold of equivalent peak ground acceleration for an Mw 7.5 event (PGA7:5) of 0:07g, existing magnitude-bounded relations for paleoliquefaction, and the timing of the paleoearthquakes and the potential PGA7:5 estimated for regional faults, we propose that the Porters Pass fault, Alpine fault, or the subduction zone faults are the most likely sources that could have triggered liquefaction at the study sites. There are other nearby regional faults that may have been the source, but there is no paleoseismic data with which to make the temporal link.

Research Papers, Lincoln University

We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).

Research Papers, Lincoln University

The city of Ōtautahi/Christchurch experienced a series of earthquakes that began on September 4th, 2010. The most damaging event occurred on February 22nd, 2011 but significant earthquakes also occurred on June 13th and December 23rd with aftershocks still occurring well into 2012. The resulting disaster is the second deadliest natural disaster in New Zealand’s history with 185 deaths. During 2011 the Canterbury earthquakes were one of the costliest disasters worldwide with an expected cost of up to $NZ30 billion. Hundreds of commercial buildings and thousands of houses have been destroyed or are to be demolished and extensive repairs are needed for infrastructure to over 100,000 homes. As many as 8,900 people simply abandoned their homes and left the city in the first few months after the February event (Newell, 2012), and as many as 50,000 may leave during 2012. In particular, young whānau and single young women comprised a disproportionate number of these migrants, with evidence of a general movement to the North Island. Te Puni Kōkiri sought a mix of quantitative and qualitative research to examine the social and economic impacts of the Christchurch earthquakes on Māori and their whānau. The result of this work will be a collection of evidence to inform policy to support and assist Māori and their whānau during the recovery/rebuild phases. To that end, this report triangulates available statistical and geographical information with qualitative data gathered over 2010 and 2011 by a series of interviews conducted with Māori who experienced the dramatic events associated with the earthquakes. A Māori research team at Lincoln University was commissioned to undertake the research as they were already engaged in transdisciplinary research (began in the May 2010), that focused on quickly gathering data from a range of Māori who experienced the disaster, including relevant economic, environmental, social and cultural factors in the response and recovery of Māori to these events. Participants for the qualitative research were drawn from Māori whānau who both stayed and left the city. Further data was available from ongoing projects and networks that the Lincoln research team was already involved in, including interviews with Māori first responders and managers operating in the CBD on the day of the February event. Some limited data is also available from younger members of affected whānau. Māori in Ōtautahi/Christchurch City have exhibited their own culturally-attuned collective responses to the disaster. However, it is difficult to ascertain Māori demographic changes due to a lack of robust statistical frameworks but Māori outward migration from the city is estimated to range between 560 and 1,100 people. The mobility displayed by Māori demonstrates an important but unquantified response by whānau to this disaster, with emigration to Australia presenting an attractive option for young Māori, an entrenched phenomenon that correlates to cyclical downturns and the long-term decline of the New Zealand economy. It is estimated that at least 315 Māori have emigrated from the Canterbury region to Australia post-quake, although the disaster itself may be only one of a series of events that has prompted such a decision. Māori children made up more than one in four of the net loss of children aged 6 to 15 years enrolled in schools in Greater Christchurch over the year to June 2011. Research literature identifies depression affecting a small but significant number of children one to two years post-disaster and points to increasing clinical and organisational demands for Māori and other residents of the city. For those residents in the eastern or coastal suburbs – home to many of the city’s Māori population - severe damage to housing, schools, shops, infrastructure, and streets has meant disruption to their lives, children’s schooling, employment, and community functioning. Ongoing abandonment of homes by many has meant a growing sense of unease and loss of security, exacerbated by arson, burglaries, increased drinking, a stalled local and national economy, and general confusion about the city’s future. Māori cultural resilience has enabled a considerable network of people, institutions, and resources being available to Māori , most noticeably through marae and their integral roles of housing, as a coordinating hub, and their arguing for the wider affected communities of Christchurch. Relevant disaster responses need to be discussed within whānau, kōhanga, kura, businesses, communities, and wider neighbourhoods. Comprehensive disaster management plans need to be drafted for all iwi in collaboration with central government, regional, and city or town councils. Overall, Māori are remarkably philosophical about the effects of the disaster, with many proudly relishing their roles in what is clearly a historic event of great significance to the city and country. Most believe that ‘being Māori’ has helped cope with the disaster, although for some this draws on a collective history of poverty and marginalisation, features that contribute to the vulnerability of Māori to such events. While the recovery and rebuild phases offer considerable options for Māori and iwi, with Ngāi Tahu set to play an important stakeholder in infrastructural, residential, and commercial developments, some risk and considerable unknowns are evident. Considerable numbers of Māori may migrate into the Canterbury region for employment in the rebuild, and trades training strategies have already been established. With many iwi now increasingly investing in property, the risks from significant earthquakes are now more transparent, not least to insurers and the reinsurance sector. Iwi authorities need to be appraised of insurance issues and ensure sufficient coverage exists and investments and developments are undertaken with a clear understanding of the risks from natural hazards and exposure to future disasters.

Research Papers, Lincoln University

4th September 2010 a 7.1 magnitude earthquake strikes near Christchurch, New Zealand’s second largest city of approximately 370,000 people. This is followed by a 6.3 magnitude quake on 22nd February 2011 and a 6.4 on 13th June. In February 181 people died and a state of national emergency was declared from 23 February to 30th April. Urban Search and Rescue teams with 150 personnel from New Zealand and 429 from overseas worked tirelessly in addition to Army, Police and Fire services. Within the central business district 1,000 buildings (of 4,000) are expected to be demolished. An estimated 10,000 houses require demolition and over 100,000 were damaged. Meanwhile the over 7,000 aftershocks have become part of the “new normal” for us all. During this time how have libraries supported their staff? What changes have been made to services? What are the resourcing opportunities? This presentation will provide a personal view from Lincoln University, Te Whare Wanaka o Aoraki, Library Teaching and Learning. Lincoln is New Zealand's third oldest university having been founded in 1878. Publicly owned and operated it is New Zealand's specialist land-based university. Lincoln is based on the Canterbury Plains, 22 kilometres south of Christchurch. On campus there was mostly minor damage to buildings while in the Library 200,000 volumes were thrown from the shelves. I will focus on the experiences of the Disaster Team and on our experiences with hosting temporarily displaced staff and students from the Christchurch Polytechnic Institute of Technology, Library, Learning & Information Services. Experiences from two other institutions will be highlighted: Christchurch City Libraries, Ngā Kete Wānanga-o-Ōtautahi. Focusing on the Māori Services Team and the Ngā Pounamu Māori and Ngāi Tahu collections. The Central library located within the red zone cordon has been closed since February, the Central library held the Ngā Pounamu Māori and Ngai Tahu collections, the largest Māori collections in the Christchurch public library network. The lack of access to these collections changed the way the Māori Services Team, part of the larger Programmes, Events and Learning Team at Christchurch City Libraries were able to provide services to their community resulting in new innovative outreach programmes and a focus on promotion of online resources. On 19th December the “temporary” new and smaller Central library Peterborough opened. The retrieved Ngā Pounamu Māori and Ngai Tahu collections "Ngā rakau teitei e iwa”, have since been re-housed and are once again available for use by the public. Te Rūnanga o Ngāi Tahu. This organisation, established by the Te Rūnanga o Ngāi Tahu Act 1996, services the statutory rights for the people of Ngāi Tahu descent and ensures that the benefits of their Treaty Claim Settlement are enjoyed by Ngāi Tahu now and in the future. Ngāi Tahu are the indigenous Māori people of the southern islands of New Zealand - Te Waipounamu. The iwi (people) hold the rangatiratanga or tribal authority to over 80 per cent of the South Island. With their headquarters based in the central business they have also had to be relocated to temporary facilities. This included their library/archive collection of print resources, art works and taonga (cultural treasures).

Research Papers, Lincoln University

Knowledge of past climate variability is essential for understanding present and future climate trends. This study used Halocarpus biformis (pink pine) ring-width chronologies to investigate palaeotemperature history in Westland, New Zealand. The ensuing reconstruction is among the longest palaeoseries produced for New Zealand to date. It is in good agreement with other tree-ring-based records, and with instrumental (both local and hemispheric) data. Thirteen pink pine chronologies were developed. Ring-width measurements were detrended using the Regional Curve Standardisation method to retain as much low-frequency variance as possible. Crossdating revealed the existence of a strong common signal among trees. Inter-site comparison indicated that a common control mechanism affected tree growth not only within sites, but also across sites. To determine whether climate was the main factor that controlled the growth of pink pine in Westland, correlation and response function analyses were employed. Temperature, precipitation and the Southern Oscillation Index were tested for their relationship with tree growth. Mean monthly temperature was identified as the primary growth-limiting factor. Chronologies were positively correlated with temperature over an extended period (5-17 months), and climate response modelling showed that temperature explained 11-60% variance in the tree-ring data. The highest and most stable correlations occurred between tree growth and summer (January-March) temperatures. Tree-ring data from the six sites that contained the strongest temperature signal were combined, and the Westland Regional Chronology (WRC) was developed. The WRC was then used to reconstruct January-March temperatures back to A.D. 1480. The calibration model explained 43% of the variance in temperature, and all calibration and verification tests were passed at high levels of significance. The reconstruction showed that temperatures in Westland have been following a positive trend over the last 520 years. The coolest 25-year period was 1542-1566, while temperatures reached their maximum in 1966-1990. Spectral analysis of the Westland palaeotemperature record revealed cycles at periods of about 3, 5-6, 11, 14, 22, 45 and 125 years. This study also confirmed that climate response is species-dependent. A separate exercise, which compared two species from the same site, demonstrated that while pink pine's growth was mainly influenced by summer temperatures, Libocedrus bidwillii was affected by conditions at the beginning of the growing season. However, the temperature signal in Westland's Libocedrus bidwillii was insufficient to produce a reliable reconstruction. It might be because the climate signal in this species was obscured by disturbances, as was shown in the final section of this project. Frequent growth releases and suppressions implied that Libocedrus bidwillii integrated both major (Alpine Fault earthquakes) and minor (windthrow) disturbances in its ring widths. Pink pine, on the other hand, was not sensitive to disturbance, and was therefore a better indicator of palaeotemperatures in Westland. This research has strengthened the New Zealand network of chronology sites, and confirmed that pink pine has great dendroclimatic value. The last 520 years of temperature fluctuations were reconstructed with a high degree of fidelity - the model developed in this thesis is currently the most accurate estimate of a temperature-growth relationship in the country.

Research Papers, Lincoln University

This thesis investigates landscape disturbance history in Westland since 1350 AD. Specifically, I test the hypothesis that large-magnitude regional episodes of natural disturbance have periodically devastated portions of the landscape and forest, and that these were caused by infrequent earthquakes along the Alpine Fault. Forest stand history reconstruction was used to determine the timing and extent of erosion and sedimentation events that initiated new forest cohorts in a 1412 ha study area in the Karangarua River catchment, south Westland. Over 85 % of the study area was disturbed sufficiently by erosion/sedimentation since 1350 AD to initiate new forest cohorts. During this time four episodes of catchment-wide disturbance impacted the study area, and these took place about 1825 AD ± 5 years (Ruera episode), 1715 AD ± 5 years (Sparkling episode), 1615 AD ± 5 years (McTaggart episode), and 1445 AD ± 15 years (Junction episode). The three most recent episodes disturbed 10 %, 35-40 % and 32-50 % respectively of the study area. The Junction episode disturbed at least 6 % of the study area, but elimination of evidence by more recent disturbances prevented an upper limit being defined. The three earliest episodes correspond to the date-ranges for three Alpine Fault earthquakes from geological data, and are the only episodes of disturbance within each date-range. An earthquake cause is also consistent with features of the disturbance record: large portions of the study area were disturbed, disturbance occurred on all types 'of landforms, and terrace surfaces were abandoned upstream of the Alpine Fault. On this basis erosion/sedimentation induced by Alpine Fault earthquakes has disturbed 14-20 % of the land surface in the study area per century. Storms and other non-seismic erosional processes have disturbed 3-4 % per century. To examine the importance of the Alpine Fault earthquakes to forest disturbance throughout Westland, I collated all available data on conifer stand age structures in the region and identified dates of disturbance events from 55 even-aged cohorts of trees. Three region-wide episodes of forest disturbance since 1350 AD were found in this sample, and these matched the three Alpine Fault earthquake-caused episodes found in the Karangarua. Forest disturbance at these times was widespread across Westland over at least 200 km from Paringa to Hokitika, and originated from both tree fall and erosion processes. This disturbance history can explain the long-observed regional conifer forest pattern in Westland, of a predominance of similar-sized stands of trees and a relative lack of small-sized (young) stands. The many similar-sized stands are a consequence of synchronous forest disturbance and re-establishment accompanying the infrequent Alpine Fault earthquakes, while the dominance of mature stands of trees and relative lack of young small-sized trees in stands is explained by the long lapsed time since the last Alpine Fault earthquake (c. 280 years). I applied the landscape disturbance history information to the existing geological data to reconstruct the paleoseismicity of the Alpine Fault since 1350 AD. Best estimates for the timing of the most recent three rupture events from these data are 1715 AD ± 5 years, 1615 AD ± 5 years and 1445 AD ± 15 years. Earthquake recurrence intervals were variable, ranging from about 100 years to at least 280 years (the lapsed time since the last event). All three events caused forest and geomorphic disturbance over at least a 200 km section of Fault between the Karangarua and Hokitika Rivers, and were probably single rupture events. Suppressions in cross dated tree-ring chronologies in the western South Island suggest that the last rupture occurred in 1717 AD, and extended as a single rupture from Haupiri to Fiordland, a distance along the Fault of 375 km.