Search

found 8 results

Research Papers, Lincoln University

Aotearoa New Zealand’s population has grown rapidly from 3.85 million in 2000, to 5 million in 2020. Ethnic diversity has consequently increased. Territorial Authorities (TAs) undertaking statutory consultation and wider public engagement processes need to respond to increased diversity and foster inclusivity. Inclusivity is necessary to facilitate a greater understanding of TA statutory functions, as well as to encourage awareness and participation in annual planning processes, and resource management plans and consents. We examined perceptions, and experiences, of planning within the ethnic Chinese immigrant population of Christchurch. The Chinese ethnic group is a significant part of the city’s population and is in itself derived from diverse cultural and language backgrounds. We surveyed 111 members of this community, via social media and in person, to identify environmental and planning issues of concern to them. We sought to ascertain their previous engagement with planning processes and to gauge their willingness for future involvement. We also undertook a small number of semi-structured interviews with Chinese immigrants to explore their experiences with planning in more detail. Results showed only 6% of respondents had been engaged in any planning processes, despite only 20% being unwilling to participate. We analysed these responses by gender, age, visa category, and length of time resident in Christchurch. Notwithstanding the low level of reported engagement, earthquake recovery (70% of respondents) along with water quality, transport, and air quality were the most important issues of concern. However, there was a general lack of awareness of the ability to make public submissions on these and other issues, and of the statutory responsibilities of TAs. We discuss possible explanations and provide several suggestions for TAs to increase awareness and to improve engagement. This includes further research to assist in identifying the nature of barriers as well as the effectiveness of trialling different solutions.

Research Papers, Lincoln University

The University of Canterbury held its inaugural Earthquake Forum on the 2nd September 2011. It was an opportunity to hear the diversity of earthquake-related research currently being undertaken in Canterbury and a chance for researchers and those working on the recovery to identify further areas where the research can support the recovery effort.The morning consisted of presentations showcasing the breadth of research currently underway and the afternoon will create the opportunity for people to connect in a series of concurrent workshops on the land, buildings and people. Neil Challenger's presentation covers landscape architecture, temporary landscapes, exploration of design ideas and specific student research related to urban design and earthquake recovery.

Research Papers, Lincoln University

Indigenous Peoples retain traditional coping strategies for disasters despite the marginalisation of many Indigenous communities. This article describes the response of Māori to the Christchurch earthquakes of 2010 and 2012 through analyses of available statistical data and reports, and interviews done three months and one year after the most damaging event. A significant difference between Māori and ‘mainstream’ New Zealand was the greater mobility enacted by Māori throughout this period, with organisations having roles beyond their traditional catchments throughout the disaster, including important support for non-Māori. Informed engagement with Indigenous communities, acknowledging their internal diversity and culturally nuanced support networks, would enable more efficient disaster responses in many countries.

Research Papers, Lincoln University

Six stands located on different land forms in mixed old-growth Nothofagus forests in the Matiri Valley (northwest of South Island, New Zealand) were sampled to examine the effects of two recent large earthquakes on tree establishment and tree-ring growth, and how these varied across land forms. 50 trees were cored in each stand to determine age structure and the cores were cross-dated to precisely date unusual periods of radial growth. The 1968 earthquake (M = 7.1, epicentre 35 km from the study area) had no discernible impact on the sampled stands. The impact of the 1929 earthquake (M = 7.7, epicentre 20 km from the study area) varied between stands, depending on whether or not they had been damaged by soil or rock movement. In all stands, the age structures showed a pulse of N. fusca establishment following the 1929 earthquake, with this species dominating establishment in large gaps created by landslides. Smaller gaps, created by branch or tree death, were closed by both N. fusca and N. menziesii. The long period of releases (1929-1945) indicates that direct earthquake damage was not the only cause of tree death, and that many trees died subsequently most likely of pathogen attack or a drought in the early 1930s. The impacts of the 1929 earthquake are compared to a storm in 1905 and a drought in 1974-1978 which also affected forests in the region. Our results confirm that earthquakes are an important factor driving forest dynamics in this tectonically active region, and that the diversity of earthquake impacts is a major source of heterogeneity in forest structure and regeneration.

Research Papers, Lincoln University

On November 14, 2016 an earthquake struck the rural districts of Kaikōura and Hurunui on New Zealand’s South Island. The region—characterized by small dispersed communities, a local economy based on tourism and agriculture, and limited transportation connections—was severely impacted. Following the quake, road and rail networks essential to maintaining steady flows of goods, visitors, and services were extensively damaged, leaving agrifood producers with significant logistical challenges, resulting in reduced productivity and problematic market access. Regional tourism destinations also suffered with changes to the number, characteristics, and travel patterns of visitors. As the region recovers, there is renewed interest in the development and promotion of agrifood tourism and trails as a pathway for enhancing rural resilience, and a growing awareness of the importance of local networks. Drawing on empirical evidence and insights from a range of affected stakeholders, including food producers, tourism operators, and local government, we explore the significance of emerging agrifood tourism initiatives for fostering diversity, enhancing connectivity, and building resilience in the context of rural recovery. We highlight the motivation to diversify distribution channels for agrifood producers, and strengthen the region’s tourism place identity. Enhancing product offerings and establishing better links between different destinations within the region are seen as essential. While such trends are common in rural regions globally, we suggest that stakeholders’ shared experience with the earthquake and its aftermath has opened up new opportunities for regeneration and reimagination, and has influenced current agrifood tourism trajectories. In particular, additional funding for tourism recovery marketing and product development after the earthquake, and an emphasis on greater connectivity between the residents and communities through strengthening rural networks and building social capital within and between regions, is enabling more resilient and sustainable futures.

Research Papers, Lincoln University

A city’s planted trees, the great majority of which are in private gardens, play a fundamental role in shaping a city’s wild ecology, ecosystem functioning, and ecosystem services. However, studying tree diversity across a city’s many thousands of separate private gardens is logistically challenging. After the disastrous 2010–2011 earthquakes in Christchurch, New Zealand, over 7,000 homes were abandoned and a botanical survey of these gardens was contracted by the Government’s Canterbury Earthquake Recovery Authority (CERA) prior to buildings being demolished. This unprecedented access to private gardens across the 443.9 hectares ‘Residential Red Zone’ area of eastern Christchurch is a unique opportunity to explore the composition of trees in private gardens across a large area of a New Zealand city. We analysed these survey data to describe the effects of housing age, socio-economics, human population density, and general soil quality, on tree abundance, species richness, and the proportion of indigenous and exotic species. We found that while most of the tree species were exotic, about half of the individual trees were local native species. There is an increasing realisation of the native tree species values among Christchurch citizens and gardens in more recent areas of housing had a higher proportion of smaller/younger native trees. However, the same sites had proportionately more exotic trees, by species and individuals, amongst their larger planted trees than older areas of housing. The majority of the species, and individuals, of the larger (≥10 cm DBH) trees planted in gardens still tend to be exotic species. In newer suburbs, gardens in wealthy areas had more native trees than gardens from poorer areas, while in older suburbs, poorer areas had more native big trees than wealthy areas. In combination, these describe, in detail unparalleled for at least in New Zealand, how the tree infrastructure of the city varies in space and time. This lays the groundwork for better understanding of how wildlife distribution and abundance, wild plant regeneration, and ecosystem services, are affected by the city’s trees.

Research Papers, Lincoln University

Millions of urban residents around the world in the coming century will experience severe landscape change – including increased frequencies of flooding due to intensifying storm events and impacts from sea level rise. For cities, collisions of environmental change with mismatched cultural systems present a major threat to infrastructure systems that support urban living. Landscape architects who address these issues express a need to realign infrastructure with underlying natural systems, criticizing the lack of social and environmental considerations in engineering works. Our ability to manage both society and the landscapes we live in to better adapt to unpredictable events and landscape changes is essential if we are to sustain the health and safety of our families, neighbourhoods, and wider community networks. When extreme events like earthquakes or flooding occur in developed areas, the feasibility of returning the land to pre-disturbance use can be questioned. In Christchurch for example, a large expanse of land (630 hectares) within the city was severely damaged by the earthquakes and judged too impractical to repair in the short term. The central government now owns the land and is currently in the process of demolishing the mostly residential houses that formed the predominant land use. Furthermore, cascading impacts from the earthquakes have resulted in a general land subsidence of .5m over much of eastern Christchurch, causing disruptive and damaging flooding. Yet, although disasters can cause severe social and environmental distress, they also hold great potential as a catalyst to increasing adaption. But how might landscape architecture be better positioned to respond to the potential for transformation after disaster? This research asks two core questions: what roles can the discipline of landscape architecture play in improving the resilience of communities so they become more able to adapt to change? And what imaginative concepts could be designed for alternative forms of residential development that better empower residents to understand and adapt the infrastructure that supports them? Through design-directed inquiry, the research found landscape architecture theory to be well positioned to contribute to goals of social-ecological systems resilience. The discipline of landscape architecture could become influential in resilience-oriented multi disciplinary collaborations, with our particular strengths lying in six key areas: the integration of ecological and social processes, improving social capital, engaging with temporality, design-led innovation potential, increasing diversity and our ability to work across multiple scales. Furthermore, several innovative ideas were developed, through a site-based design exploration located within the residential red zone, that attempt to challenge conventional modes of urban living – concepts such as time-based land use, understanding roads as urban waterways, and landscape design and management strategies that increase community participation and awareness of the temporality in landscapes.

Research Papers, Lincoln University

Mixed conifer, beech and hardwood forests are relatively common in Aotearoa/New Zealand, but are not well studied. This thesis investigates the coexistence, regeneration dynamics and disturbance history of a mixed species forest across an environmental gradient of drainage and soil development in north Westland. The aim was to investigate whether conifers, beech and non-beech hardwood species were able to coexist on surfaces that differed in their underlying edaphic conditions, and if so to understand the mechanisms that influenced their regeneration on both poorly drained and well drained soils. The site selected was an area of high tree species diversity on a lowland 0.8 km² post-glacial terrace at the base of Mount Harata in the Grey River Valley. My approach was to use forest stand history reconstruction at two spatial scales: an intensive within-plot study of stand dynamics (chapter 1) and a whole-landform approach (chapter 2) that examined whether the dynamics identified at the smaller within-plot scale reflected larger patterns across the terrace. In chapter 1, three large permanent plots (0.3-0.7 ha) were placed at different points along the drainage gradient, one plot situated in each of the mainly well-drained, poorly drained and very poorly drained areas along the terrace. Information was gathered on species age and size structures, spatial distributions of tree ages, species interactions, microsite establishment preferences, patterns of stand mortality, and disturbance history in each plot. There were differences in stand structure, composition and relative abundance of species found between the well drained plot and the two poorer drained plots. On the well drained site conifers were scarce, the beeches Nothofagus fusca and N. menziesii dominated the canopy, and in the subcanopy the hardwood species Weinmannia racemosa and Quintinia acutifolia were abundant. As drainage became progressively poorer, the conifers Dacrydium cupressinum and Dacrycarpus dacrydioides became more abundant and occupied the emergent tier over a beech canopy. The hardwoods W. racemosa and Q. acutifolia became gradually less abundant in the subcanopy, whereas the hardwood Elaeocarpus hookerianus became more so. In the well drained plot, gap partitioning for light between beeches and hardwoods enabled coexistence in response to a range of different sized openings resulting from disturbances of different extent. In the two more poorly drained plots, species also coexisted by partitioning microsite establishment sites according to drainage. There were several distinct periods where synchronous establishment of different species occurred in different plots, suggesting there were large disturbances: c. 100yrs, 190-200 yrs, 275-300 yrs and 375-425 yrs ago. Generally after the same disturbance, different species regenerated in different plots reflecting the underlying drainage gradient. However, at the same site after different disturbances, different sets of species regenerated, suggesting the type and extent of disturbances and the conditions left behind influenced species regeneration at some times but not others. The regeneration of some species (e.g., N. fusca in the well-drained plot, and Dacrydium in the poorer drained plots) was periodic and appeared to be closely linked to these events. In the intervals between these disturbances, less extensive disturbances resulted in the more frequent N. menziesii and especially hardwood regeneration. The type of tree death caused by different disturbances favoured different species, with dead standing tree death favouring the more shade-tolerant N. menziesii and hardwoods, whereas uprooting created a mosaic of microsite conditions and larger gap sizes that enabled Dacrycarpus, N. fusca and E. hookerianus to maintain themselves in the poorly drained areas. In chapter 2, 10 circular plots (c. 0.12 ha) were placed in well drained areas and 10 circular plots (c. 0.2 ha) in poorly drained plots to collect information on species population structures and microsite preferences. The aims were to reconstruct species' regeneration responses to a range of disturbances of different type and extent across the whole terrace, and to examine whether there were important differences in the effects of these disturbances. At this landform scale, the composition and relative abundances of species across the drainage gradient reflected those found in chapter 1. There were few scattered conifers in well drained areas, despite many potential regeneration opportunities created from a range of different stand destroying and smaller scale disturbances. Three of the four periods identified in chapter 1 reflected distinct terrace-wide periods of regeneration 75-100 yrs, 200-275 yrs and 350-450 yrs ago, providing strong evidence of periodic large, infrequent disturbances that occurred at intervals of 100-200 yrs. These large, infrequent disturbances have had a substantial influence in determining forest history, and have had long term effects on forest structure and successional processes. Different large, infrequent disturbances had different effects across the terrace, with the variability in conditions that resulted enabling different species to regenerate at different times. For example, the regeneration of distinct even-aged Dacrydium cohorts in poorly drained areas was linked to historical Alpine Fault earthquakes, but not to more recent storms. The variation in the intensity of different large, infrequent disturbances at different points along the environmental drainage gradient, was a key factor influencing the scale of impacts. In effect, the underlying edaphic conditions influenced species composition along the drainage gradient and disturbance history regulated the relative abundances of species. The results presented here further emphasise the importance of large scale disturbances as a mechanism that allows coexistence of different tree species in mixed forest, in particular for the conifers Dacrydium, Dacrycarpus and the beech N. fusca, by creating much of the environmental variation to which these species responded. This study adds to our understanding of the effects of historical earthquakes in the relatively complex forests of north Westland, and further illustrates their importance in the Westland forest landscape as the major influential disturbance on forest pattern and history. These results also further develop the 'two-component' model used to describe conifer/angiosperm dynamics, by identifying qualitative differences in the impacts of different large, infrequent disturbances across an environmental gradient that allowed for coexistence of different species. In poorer drained areas, these forests may even be thought of as 'three-component' systems with conifers, beeches and hardwoods exhibiting key differences in their regeneration patterns after disturbances of different type and extent, and in their microsite preferences.