Tourism is New Zealand’s fourth largest industry, providing jobs for thousands of New
Zealanders and significant foreign capital for the nation’s economy. Of concern to ministry and industry
decision makers is the “spatial yield” of these tourists which takes into account the spatial and temporal
contributions of their movements in terms of economic, cultural and environmental impacts. We have
developed an agent-based model of tourism movements to simulate these impacts and to allow for the
evaluation of different scenarios (such as increases in petrol prices or variations in currency exchange rates)
on the behaviours of those tourists. In order to develop realistic and grounded heuristics for the model,
interview protocols were developed in order to identify the key drivers in tourists’ decision making process.
The recent earthquakes in Canterbury have left thousands of Christchurch residents’ homeless or facing the possibility of homelessness. The New Zealand Government, so far, have announced that 5,100 homes in Christchurch will have to be abandoned as a result of earthquake damaged land (Christchurch City Council, 2011). They have been zoned red on the Canterbury Earthquake Recovery Authority (CERA) map and there are another 10,000 that have been zoned orange, awaiting a decision (Christchurch City Council, 2011). This situation has placed pressures on land developers and local authorities to speed up the process associated with the development of proposed subdivisions in Christchurch to accommodate residents in this situation (Tarrant, 2011).
Since the 2010/11 Canterbury earthquakes, Akaroa has been hosting the majority of cruise ship
arrivals to Canterbury. This amounts to approximately 70-74 days per season, when between 2,000-
4,000 persons come ashore between 9am and 4pm when in port. This increased level of cruise ship
arrivals has had significant impacts, both beneficial and detrimental, on Akaroa. Attitudes within the
Akaroa community to hosting cruise ship arrivals appear to be divided, and has led to public debate
in Akaroa about the issue. In response to this situation, Christchurch and Canterbury Tourism (CCT)
commissioned this research project to assess the impact of cruise ship tourism on the Akaroa
community.This research was commissioned and funded by Christchurch and Canterbury Tourism (CCT).
Aotearoa New Zealand’s population has grown rapidly from 3.85 million in 2000, to 5 million in 2020. Ethnic diversity has consequently increased. Territorial Authorities (TAs) undertaking statutory consultation and wider public engagement processes need to respond to increased diversity and foster inclusivity. Inclusivity is necessary to facilitate a greater understanding of TA statutory functions, as well as to encourage awareness and participation in annual planning processes, and resource management plans and consents. We examined perceptions, and experiences, of planning within the ethnic Chinese immigrant population of Christchurch. The Chinese ethnic group is a significant part of the city’s population and is in itself derived from diverse cultural and language backgrounds. We surveyed 111 members of this community, via social media and in person, to identify environmental and planning issues of concern to them. We sought to ascertain their previous engagement with planning processes and to gauge their willingness for future involvement. We also undertook a small number of semi-structured interviews with Chinese immigrants to explore their experiences with planning in more detail. Results showed only 6% of respondents had been engaged in any planning processes, despite only 20% being unwilling to participate. We analysed these responses by gender, age, visa category, and length of time resident in Christchurch. Notwithstanding the low level of reported engagement, earthquake recovery (70% of respondents) along with water quality, transport, and air quality were the most important issues of concern. However, there was a general lack of awareness of the ability to make public submissions on these and other issues, and of the statutory responsibilities of TAs. We discuss possible explanations and provide several suggestions for TAs to increase awareness and to improve engagement. This includes further research to assist in identifying the nature of barriers as well as the effectiveness of trialling different solutions.
Initial recovery focus is on road access (especially the inland SH70) although attention also needs to be focussed on the timelines for reopening SH1 to the south. Information on progress and projected timelines is updated daily via NZTA (www.nzta.govt.nz/eq-travel ). Network analyses indicate potential day trip access and re-establishment of the Alpine Pacific triangle route. When verified against ‘capacity to host’ (Part 2 (15th December) there appears to potential for the reestablishment of overnight visits. Establishing secure road access is the key constraint to recovery.
In terms of the economic recovery the Kaikoura District has traditionallyattracted a large number of visitors which can be grouped as: second home (and caravan) owners, domestic New Zealand and international travellers. These have been seen through a behaviour lens as “short stop”, ‘day” (where Kaikoura is the specific focal destination) and overnight visitors. At the present restricted access appears to make the latter group less amenable to visiting Kaikoura, not the least because the two large marine mammal operators have a strong focus on international visitors. For the present the domestic market provides a greater initial pathway to recovery.
Our experiences in and reflections on Christchurch suggest Kaikoura will not go back to what it once was. A unique opportunity exists to reframe the Kaikoura experience around earthquake geology and its effects on human and natural elements. To capitalise on this opportunity there appears to be a need to move quickly on programming and presenting such experiences as part of a pathway to re-enabling domestic tourists while international visitor bookings and flows can be re-established. The framework developed for this study appears to be robust for rapid post disaster assessment. It needs to be regularly updated and linked with emerging governance and recovery processes.
Mixed conifer, beech and hardwood forests are relatively common in Aotearoa/New
Zealand, but are not well studied. This thesis investigates the coexistence, regeneration
dynamics and disturbance history of a mixed species forest across an environmental
gradient of drainage and soil development in north Westland.
The aim was to investigate whether conifers, beech and non-beech hardwood species were
able to coexist on surfaces that differed in their underlying edaphic conditions, and if so to understand the mechanisms that influenced their regeneration on both poorly drained and
well drained soils. The site selected was an area of high tree species diversity on a lowland
0.8 km² post-glacial terrace at the base of Mount Harata in the Grey River Valley.
My approach was to use forest stand history reconstruction at two spatial scales: an
intensive within-plot study of stand dynamics (chapter 1) and a whole-landform approach
(chapter 2) that examined whether the dynamics identified at the smaller within-plot scale
reflected larger patterns across the terrace.
In chapter 1, three large permanent plots (0.3-0.7 ha) were placed at different points along
the drainage gradient, one plot situated in each of the mainly well-drained, poorly drained
and very poorly drained areas along the terrace. Information was gathered on species age
and size structures, spatial distributions of tree ages, species interactions, microsite
establishment preferences, patterns of stand mortality, and disturbance history in each plot.
There were differences in stand structure, composition and relative abundance of species
found between the well drained plot and the two poorer drained plots. On the well drained
site conifers were scarce, the beeches Nothofagus fusca and N. menziesii dominated the
canopy, and in the subcanopy the hardwood species Weinmannia racemosa and Quintinia
acutifolia were abundant. As drainage became progressively poorer, the conifers
Dacrydium cupressinum and Dacrycarpus dacrydioides became more abundant and
occupied the emergent tier over a beech canopy. The hardwoods W. racemosa and Q.
acutifolia became gradually less abundant in the subcanopy, whereas the hardwood
Elaeocarpus hookerianus became more so.
In the well drained plot, gap partitioning for light between beeches and hardwoods enabled
coexistence in response to a range of different sized openings resulting from disturbances
of different extent. In the two more poorly drained plots, species also coexisted by
partitioning microsite establishment sites according to drainage.
There were several distinct periods where synchronous establishment of different species
occurred in different plots, suggesting there were large disturbances: c. 100yrs, 190-200
yrs, 275-300 yrs and 375-425 yrs ago. Generally after the same disturbance, different
species regenerated in different plots reflecting the underlying drainage gradient. However,
at the same site after different disturbances, different sets of species regenerated,
suggesting the type and extent of disturbances and the conditions left behind influenced
species regeneration at some times but not others. The regeneration of some species (e.g.,
N. fusca in the well-drained plot, and Dacrydium in the poorer drained plots) was periodic
and appeared to be closely linked to these events. In the intervals between these
disturbances, less extensive disturbances resulted in the more frequent N. menziesii and
especially hardwood regeneration. The type of tree death caused by different disturbances
favoured different species, with dead standing tree death favouring the more shade-tolerant
N. menziesii and hardwoods, whereas uprooting created a mosaic of microsite conditions
and larger gap sizes that enabled Dacrycarpus, N. fusca and E. hookerianus to maintain
themselves in the poorly drained areas.
In chapter 2, 10 circular plots (c. 0.12 ha) were placed in well drained areas and 10
circular plots (c. 0.2 ha) in poorly drained plots to collect information on species
population structures and microsite preferences. The aims were to reconstruct species'
regeneration responses to a range of disturbances of different type and extent across the
whole terrace, and to examine whether there were important differences in the effects of
these disturbances.
At this landform scale, the composition and relative abundances of species across the
drainage gradient reflected those found in chapter 1. There were few scattered conifers in well drained areas, despite many potential regeneration opportunities created from a range
of different stand destroying and smaller scale disturbances.
Three of the four periods identified in chapter 1 reflected distinct terrace-wide periods of
regeneration 75-100 yrs, 200-275 yrs and 350-450 yrs ago, providing strong evidence of
periodic large, infrequent disturbances that occurred at intervals of 100-200 yrs. These
large, infrequent disturbances have had a substantial influence in determining forest
history, and have had long term effects on forest structure and successional processes.
Different large, infrequent disturbances had different effects across the terrace, with the
variability in conditions that resulted enabling different species to regenerate at different
times. For example, the regeneration of distinct even-aged Dacrydium cohorts in poorly
drained areas was linked to historical Alpine Fault earthquakes, but not to more recent
storms. The variation in the intensity of different large, infrequent disturbances at different
points along the environmental drainage gradient, was a key factor influencing the scale of
impacts. In effect, the underlying edaphic conditions influenced species composition along
the drainage gradient and disturbance history regulated the relative abundances of species.
The results presented here further emphasise the importance of large scale disturbances as a
mechanism that allows coexistence of different tree species in mixed forest, in particular
for the conifers Dacrydium, Dacrycarpus and the beech N. fusca, by creating much of the
environmental variation to which these species responded. This study adds to our
understanding of the effects of historical earthquakes in the relatively complex forests of
north Westland, and further illustrates their importance in the Westland forest landscape as
the major influential disturbance on forest pattern and history.
These results also further develop the 'two-component' model used to describe
conifer/angiosperm dynamics, by identifying qualitative differences in the impacts of
different large, infrequent disturbances across an environmental gradient that allowed for
coexistence of different species. In poorer drained areas, these forests may even be thought
of as 'three-component' systems with conifers, beeches and hardwoods exhibiting key
differences in their regeneration patterns after disturbances of different type and extent, and
in their microsite preferences.
Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater
Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.
Brooklands Lagoon / Te Riu o Te Aika Kawa (‘Brooklands’) is an important wetland and estuarine ecosystem in Canterbury. It is a site of cultural significance to Ngāi Tūāhuriri, and is also valued by the wider community. Home to an array of life, it is connected to the Pūharakekenui/Styx and Waimakariri rivers, and is part of a wetland landscape complex that includes the Avon-Heathcote / Ihutai estuary to the south and the Ashley / Rakahuri estuary to the north. Notionally situated within the territorial boundary of Christchurch City Council and jurisdictionally encompassed by the regional council Environment Canterbury, it has been legally determined to be part of the coastal marine area. The complicated administrative arrangements for the lagoon mirror the biophysical and human challenges to this surprisingly young ecosystem since its formation in 1940.
Here we present a synthesis of the historical events and environmental influences that have shaped Brooklands Lagoon. Before existing as an intertidal ecosystem, the Waimakariri river mouth was situated in what is now the southern end of the lagoon. A summary timeline of key events is set out in the table below. These included the diversion of the Waimakariri River mouth via the construction of Wrights Cut in the 1930s, which influenced the way that the lower reaches of the river interacted with the land and sea. A large flood in 1940 shifted the river mouth ~2 to 3 kilometres north, that created the landscape that we see today. However, this has not remained stable, as the earthquake sequence in 2010 and 2011 subsided the bed of the estuary.
The changes are ongoing, as sea level rise and coastal inundation will place ongoing pressure on the aquatic ecosystem and surrounding land. How to provide accommodation space for Brooklands as an estuary will be a key planning and community challenge, as Environment Canterbury begins the engagement for the review of its Regional Coastal Plan. There is also a requirement to safeguard its ecological health under the 2020 National Policy Statement on Freshwater Management. This will necessitate an integrated mountains to sea (ki uta ki tai) management approach as the lagoon is affected by wider catchment activities. We hope that this report will contribute to, and inform these processes by providing a comprehensive historical synthesis, and by identifying considerations for the future collaborative management of Brooklands Lagoon, and protection of its values. In essence, we suggest that Te Riu o Te Aika Kawa deserves some sustained aroha.
This research investigates creativity in a post-disaster setting. The data explore creativity at the intersection of the affected community of Christchurch, New Zealand and the social processes that followed the earthquakes of 2010 - 2012. Personal and contextual influences on creative ideas implemented for community or commercial benefit are also examined.
Viewed as creative, unique approaches to post-disaster problem solving were celebrated locally, nationally and internationally (Bergman, 2014; Wesener, 2015; Cloke & Conradson, 2018). Much has been written about creativity, particularly creativity in organisations and in business. However, little is known with regards to who creates after a disaster, why individuals choose to do so and what impact the post-disaster context has on their creative activity. This exploratory study draws on the literature from the fields of creativity, disasters, psychology, sociology and entrepreneurship to interpret first-hand accounts of people who acted on creative ideas in a physically and socially altered environment.
A mixed method - albeit predominantly qualitative - approach to data gathering was adopted that included interviews (n=45) with participants who had been the primary drivers of creative ideas implemented in Christchurch after September 2010 – the first major (7.1 magnitude) earthquake in a prolonged sequence of thousands of aftershocks.
Key findings include that a specific type of creativity results from the ‘collision’ between individuals and social processes activated by a disaster situation. This type of creativity could be best categorised as ‘little c’ or socially adaptive and emerges through a prosocial filter. There is wide consensus amongst creativity researchers - principally social psychologists - that for output to be considered creative it must be both novel and useful (Runco & Jaegar, 2012). There is greater tolerance for the novelty component after a disaster as novelty itself has greater utility, either as a distraction or because alternatives are few. Existing creativity models show context as input – an additional component of the creative process – but after a disaster the event itself becomes the catalyst for social processes that result in the creativity seen. Most participants demonstrated characteristics commonly associated with creativity and could be categorised as either a ‘free thinker’ and/or an ‘opportunist’. Some appear preadapted to create and thrive in unstable circumstances.
Findings from participants’ completion of a Ten Item Personality Inventory (TIPI) showed an apparent reduced need for extraversion in relation to implementing creative ventures in society. This factor, along with higher levels of agreeableness may indicate a potentially detrimental effect on the success of creative ideas established after a disaster, despite earnest intentions.
Three new models are presented to illustrate the key findings of this study. The models imply that disasters enhance both the perceived value of creativity and the desire to act creatively for prosocial ends. The models also indicate that these disaster influenced changes are likely to be temporary.
Globally, the maximum elevations at which treelines are observed to occur coincide with a 6.4 °C soil isotherm. However, when observed at finer scales, treelines display a considerable degree of spatial complexity in their patterns across the landscape and are often found occurring at lower elevations than expected relative to the global-scale pattern. There is still a
lack of understanding of how the abiotic environment imposes constraints on treeline patterns, the scales at which different effects are acting, and how these effects vary over large spatial extents. In this thesis, I examined abrupt Nothofagus treelines across seven degrees of
latitude in New Zealand in order to investigate two broad questions: (1) What is the nature and extent of spatial variability in Nothofagus treelines across the country? (2) How is this variation associated with abiotic variation at different spatial scales? A range of GIS, statistical, and atmospheric modelling methods were applied to address these two questions.
First, I characterised Nothofagus treeline patterns at a 15x15km scale across New Zealand using a set of seven, GIS-derived, quantitative metrics that describe different aspects of treeline position, shape, spatial configuration, and relationships with adjacent vegetation.
Multivariate clustering of these metrics revealed distinct treeline types that showed strong spatial aggregation across the country. This suggests a strong spatial structuring of the abiotic environment which, in turn, drives treeline patterns. About half of the multivariate treeline
metric variation was explained by patterns of climate, substrate, topographic and disturbance variability; on the whole, climatic and disturbance factors were most influential.
Second, I developed a conceptual model that describes how treeline elevation may
vary at different scales according to three categories of effects: thermal modifying effects, physiological stressors, and disturbance effects. I tested the relevance of this model for Nothofagus treelines by investigating treeline elevation variation at five nested scales (regional to local) using a hierarchical design based on nested river catchments. Hierarchical linear modelling revealed that the majority of the variation in treeline elevation resided at the broadest, regional scale, which was best explained by the thermal modifying effects of solar radiation, mountain mass, and differences in the potential for cold air ponding. Nonetheless, at finer scales, physiological and disturbance effects were important and acted to modify the regional trend at these scales. These results suggest that variation in abrupt treeline elevations
are due to both broad-scale temperature-based growth limitation processes and finer-scale stress- and disturbance-related effects on seedling establishment.
Third, I explored the applicability of a meso-scale atmospheric model, The Air
Pollution Model (TAPM), for generating 200 m resolution, hourly topoclimatic data for
temperature, incoming and outgoing radiation, relative humidity, and wind speeds. Initial assessments of TAPM outputs against data from two climate station locations over seven years showed that the model could generate predictions with a consistent level of accuracy for both sites, and which agreed with other evaluations in the literature. TAPM was then used to generate data at 28, 7x7 km Nothofagus treeline zones across New Zealand for January
(summer) and July (winter) 2002. Using mixed-effects linear models, I determined that both
site-level factors (mean growing season temperature, mountain mass, precipitation,
earthquake intensity) and local-level landform (slope and convexity) and topoclimatic factors (solar radiation, photoinhibition index, frost index, desiccation index) were influential in
explaining variation in treeline elevation within and among these sites. Treelines were
generally closer to their site-level maxima in regions with higher mean growing season
temperatures, larger mountains, and lower levels of precipitation. Within sites, higher
treelines were associated with higher solar radiation, and lower photoinhibition and
desiccation index values, in January, and lower desiccation index values in July. Higher treelines were also significantly associated with steeper, more convex landforms.
Overall, this thesis shows that investigating treelines across extensive areas at multiple study scales enables the development of a more comprehensive understanding of treeline variability and underlying environmental constraints. These results can be used to formulate new hypotheses regarding the mechanisms driving treeline formation and to guide the optimal choice of field sites at which to test these hypotheses.