Environmental assessment in New Zealand is governed by the provisions of the Resource Management Act (RMA) 1991. The Act requires persons wishing to undertake certain activities to apply for resource consent from their local or regional council - a procedure termed the Resource Consent Process. The key component of a resource consent application is an Assessment of Environmental Effects (AEE) report; a statement of the environmental effects of a proposed activity.
Problems arise when environmental assessments are complicated by uncertain and abnormal circumstances such as natural hazards. Natural hazards (including earthquakes, floods, tsunami, and coastal erosion) can be catastrophic to an environment. If hazards are not avoided or successfully mitigated, they can result in serious consequences to proposed development and to the environment which the proposal relates. The aim of this study is to assess the adequacy of the resource consent process (as outlined in the Resource Management Act 1991) for dealing with proposed development affected by natural hazards.
This study reviews the context of the resource consent process for dealing with natural hazards to identify potential issues in the assessment process. Guidance criteria for assessing natural hazards (termed Natural Hazard Assessment) are developed to evaluate against two resource consent applications affected by natural hazards. The findings of the consent process review and case study evaluation are discussed to determine the adequacy of the consent process for dealing with natural hazards.
From the review of the consent process it was evident that the process has a number of problems for accommodating natural hazards into the assessment. Although many important traits are provided for in the process, such traits are not always reflected in environmental assessments.
Evaluation of two resource consent applications against the process of Natural Hazard Assessment (NHA) showed that these consent applications did not adequately detail key information relating to natural hazards. Many problems evident in these applications were not amended by the Consent Authorities in the review process and subsequently consent was granted to information-deficient applications. Problematic issues identified in this study include:
• A distinct lack of guidance (legal or otherwise) for the applicant and Consent Authority regarding the boundaries of inclusion of an effect;
• Deficiencies in planning documents are reflected in AEE reports, the review of the consent application and in the end-decision;
• Under-utilisation of "experts" throughout the consent process;
• Minimal identification and account for the degree of uncertainty throughout the consent process;
• Resource consents are being granted even though information in consent applications, and the means for assessing the information is deficient.
These issues reflect that decisions are not being made based on all elements involved in a potential hazard. Subsequently, the resource consent process is not adequate for dealing with all aspects of natural hazards.
The Natural Hazard Assessment process provides educated assessment criteria to assess development affected by natural hazards. By accounting for the problems evident in the consent process, the introduction of a three-tier identification, risk and vulnerability assessment, and evaluation process to account for uncertainties, Natural Hazard Assessment provides a platform for a thorough assessment of natural hazards. The application of the principles of Natural Hazard Assessment to the consent applications affected by natural hazards showed that many key issues were not covered in the assessment under the consent process.
The nature of a natural event is that one may not occur in a given region over many lifetimes, however they will occur at some stage and planning and environmental assessment needs to provide for the associated hazards. Implementation of Natural Hazard Assessment is needed to help provide answers for the problems experienced in the resource consent process. Natural Hazard Assessment would allow decision-makers to make informed judgements on the situation at hand, leading to better planning and land-use options.
Change to current practice is needed, as following the current path of environmental assessment will be the hazard in the end.
Numerous rockfalls released during the 2010–2011 Canterbury earthquake sequence affected vital road sections for local commuters. We quantified rockfall fatality risk on two main routes by adapting a risk approach for roads originally developed for snow avalanche risk. We present results of the collective and individual fatality risks for traffic flow and waiting traffic. Waiting traffic scenarios particularly address the critical spatial-temporal dynamics of risk, which should be acknowledged in operational risk management. Comparing our results with other risks commonly experienced in New Zealand indicates that local rockfall risk is close to tolerability thresholds and likely exceeds acceptable risk.
This presentation outlines the impacts on the Maori community of the Christchurch earthquakes including responses, resilience and population movements.
Modern cities are surprisingly dependent on tourism and competition among them for tourist dollars—both domestically and internationally—can be extreme. New Zealand’s second city, Christchurch, is no exception. In 2009, tourism reportedly earned $2.3 billion and accounted for more than 12 per cent of the region’s employment. Then came a series of devastating earthquakes that claimed 185 lives and decimated the city’s
infrastructure. More than 10,000 earthquakes and aftershocks have radically altered Christchurch’s status as a tourism destination. Two
years on, what is being done to recover from one of the world’s largest natural disasters? Can the “Garden City” reassert itself as a highly-desirable Australasian destination with a strong competitive advantage over rivals that have not been the target of natural disasters.
When a tragedy occurs of local or national scale throughout the world a memorial is often built to remember the victims, and to keep the tragedy fresh in the minds of generations with the conviction that this must not be repeated. Memorials to commemorate natural disasters very to the objective of a human induced tragedy in that future catastrophic events that affect the lives and livelihood of many citizens are sure to reoccur in countries that are geographically pre-disposed to the ravages of nature. This thesis examines memorial sites as case studies in New Zealand and Japan to explore the differences in how these two countries memorialise earthquakes, and tsunamis in the case of Japan, and whether there are lessons that each could learn from each other. In so doing, it draws largely on scholarly literature written about memorials commemorating war as little is written on memorials that respond to natural disasters. Visited case sites in both countries are analysed through multiple qualitative research methods with a broad view of what constitutes a memorial when the landscape is changed by the devastation of a natural disaster. How communities prepare for future events through changes in planning legislation, large scale infrastructure, tourism and preparedness for personal safety are issues addressed from the perspective of landscape architecture through spatial commemorative places. The intentions and meanings of memorials may differ but in the case of a memorial of natural disaster there is a clear message that is common to all. To reduce the severity of the number of deaths and level of destruction, education and preparedness for future events is a key aim of memorials and museums.
Increasingly, economic, political and human crises, along with natural disasters, constitute a recurrent reality around the world. The effect of large-scale disaster and economic disruption are being felt far and wide and impacting libraries in diverse ways. Libraries are casualties of natural disasters, from earthquakes to hurricanes, as well as civil unrest and wars. Sudden cuts in library budgets have resulted in severe staff reductions, privatization and even closures. The presenters share their experiences about how they have prepared for or coped with profound change.
Natural hazards continue to have adverse effects on communities and households worldwide, accelerating research on proactively identifying and enhancing characteristics associated with resilience. Although resilience is often characterized as a return to normal, recent studies of postdisaster recovery have highlighted the ways in which new opportunities can emerge following disruption, challenging the status quo. Conversely, recovery and reconstruction may serve to reinforce preexisting social, institutional, and development pathways. Our understanding of these dynamics is limited however by the small number of practice examples, particularly for rural communities in developed nations. This study uses a social–ecological inventory to document the drivers, pathways, and mechanisms of resilience following a large-magnitude earthquake in Kaikōura, a coastal community in Aotearoa New Zealand. As part of the planning and implementation phase of a multiyear project, we used the tool as the basis for indepth and contextually sensitive analysis of rural resilience. Moreover, the deliberate application of social–ecological inventory was the first step in the research team reengaging with the community following the event. The inventory process provided an opportunity for research partners to share their stories and experiences and develop a shared understanding of changes that had taken place in the community. Results provide empirical insight into reactions to disruptive change associated with disasters. The inventory also informed the design of targeted research collaborations, established a platform for longer-term community engagement, and provides a baseline for assessing longitudinal changes in key resilience-related characteristics and community capacities. Findings suggest the utility of social–ecological inventory goes beyond natural resource management, and that it may be appropriate in a range of contexts where institutional, social, and economic restructuring have developed out of necessity in response to felt or anticipated external stressors.
Creative temporary or transitional use of vacant urban open spaces is
seldom foreseen in traditional urban planning and has historically been
linked to economic or political disturbances. Christchurch, like most
cities, has had a relatively small stock of vacant spaces throughout
much of its history. This changed dramatically after an earthquake and
several damaging aftershocks hit the city in 2010 and 2011; temporary
uses emerged on post-earthquake sites that ran parallel to the “official”
rebuild discourse and programmes of action. The paper examines
a post-earthquake transitional community-initiated open space (CIOS)
in central Christchurch. CIOS have been established by local community
groups as bottom-up initiatives relying on financial sponsorship,
agreements with local landowners who leave their land for temporary
projects until they are ready to redevelop, and volunteers who build
and maintain the spaces. The paper discusses bottom-up governance
approaches in depth in a single temporary post-earthquake community
garden project using the concepts of community resilience and social
capital. The study analyses and highlights the evolution and actions of
the facilitating community organisation (Greening the Rubble) and the
impact of this on the project. It discusses key actors’ motivations and
values, perceived benefits and challenges, and their current involvement
with the garden. The paper concludes with observations and recommendations about the initiation of such projects and the challenges for those wishing to study ephemeral social recovery phenomena.
This report forms part of a research project examining rural community resilience to natural hazard events, with a particular focus on transient population groups. A preliminary desktop and scoping exercise was undertaken to examine nine communities affected by the Kaikoura earthquake and to identify the variety of transient population groups that are commonly (and increasingly) found in rural New Zealand (see Wilson & Simmons, 2017). From this, four case study communities – Blenheim, Kaikoura, Waiau and St Arnaud – were selected to represent a range of settlement types.
These communities varied in respect of social, economic and geographic features, including the presence of particular transient population groups, and earthquake impact. While the 2016 Kaikoura earthquake provided a natural hazard event on which to focus the research, the research interest was in long-term (and broad) community resilience, rather than short-term (and specific) response and recovery actions which occurred post-earthquake.
Today there is interest in building resilient communities. Identifying and managing the risks of natural hazards with communities who face compounding hazards is challenging. Alpine ski areas provide a unique context to study this challenging and complex process. The traditional approach taken to manage natural hazards is discipline-centric and focuses on common (e.g. high probability low consequence) natural hazards such as avalanches. While this thesis acknowledges that the common approach is rational, it argues that we can extend our communities of practice to include rare (e.g. low probability / high consequence) natural hazards such as earthquakes. The dynamically complex nature of these ‘rare’ hazards limits our understanding about them, but by seeking and using the lived experiences of people in mountain communities some knowledge can be gained to help improve our understanding of how to adapt. This study focuses on such an approach in the context of alpine ski areas prone to earthquakes as a first step toward identifying key policy opportunities for hazard mitigation in general.
The contributions can be broken down into methodological, contextual, and theoretical pursuits, as well as opportunities for improving future research. A development mixed method triangulated approach was justified because the research problem (i.e. earthquakes in ski areas) has had little consideration. The context provided the opportunity to test the integration of methods while dealing with the challenges of research in a novel context. Advancement to fuzzy cognitive mapping was achieved through the use of unsupervised neural networks (Self-organizing Maps or Kohonen Maps). The framework applied in the multi-site case study required a synthesis of current approaches, advances to methods and a functional use of cultural theory. Different approaches to participatory policy development were reviewed to develop a research protocol that was accessible.
Cultural theory was selected as a foundation for the thesis because of its’ preference for plural rationalities from five ways of organizing. Moreover, the study undertook a shift away from the dichotomy of ‘methodological individualism’ and ‘methodological collectivism’ and instead chose the dividual (i.e. social solidarities that consist of culural biases, behavioral strategies and social relations) as a consistent unit of analysis despite three different methodologies including: field studies, qualitative interviews, and fuzzy cognitive maps. In this sense, the thesis sought to move away from ‘elegant solutions’ from singular solidarities or methods toward a research philosophy that sustains requisite variety and clumsy solutions. Overall the approach was a trandisciplinary framework that is a step toward sustainable hazards mitigation.
The results indicate that the selections of risks and adaptation strategies associated with the in-situ hazards are driven by roles that managers, workers, and riders play in the context. Additionally, fuzzy cognitive maps were used as an extension of qualitative interviews and demonstrated the potential for power struggles that may arise between participant groups when considering strategies for preparation, response and recovery. Moreover, the results stress that prolonged engagement with stakeholders is necessary to improve the policy development process. Some comments are made on the compatibility condition of congruence between cultural biases, behavioural strategies, and social relations. As well, inclusion of the hermit/autonomous solidarities is stressed as a necessary component of future applications of cultural theory. The transdisciplinary mixed-method framework is an approach that can be transferred to many other vital areas of research where integration is desirable.
On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.
This research provides an investigation into the impact on the North Island freight infrastructure, in the event of a disruption of the Ports of Auckland (POAL).
This research is important to New Zealand, especially having experienced the Canterbury earthquake disaster in 2010/2011 and the current 2012 industrial action plaguing the POAL. New Zealand is a net exporter of a combination of manufactured high value goods, commodity products and raw materials. New Zealand’s main challenge lies in the fact of its geographical distances to major markets. Currently New Zealand handles approximately 2 million containers per annum, with a minimum of ~40% of those containers being shipped through POAL.
It needs to be highlighted that POAL is classified as an import port in comparison to Port of Tauranga (POT) that has traditionally had an export focus. This last fact is of great importance, as in a case of a disruption of the POAL, any import consigned to the Auckland and northern region will need to be redirected through POT in a quick and efficient way to reach Auckland and the northern regions. This may mean a major impact on existing infrastructure and supply chain systems that are currently in place.
This study is critical as an element of risk management, looking at how to mitigate the risk to the greater Auckland region. With the new Super City taking hold, the POAL is a fundamental link in the supply chain to the largest metropolitan area within New Zealand.
Creativity that is driven by a need for physical or economic survival, which disasters are likely to inspire, raises the question of whether such creativity fits with conventional theories and perspectives of creativity. In this paper we use the opportunity afforded by the 2010-2013 Christchurch, New Zealand earthquakes to follow and assess the creative practices and responses of a number of groups and individuals. We use in-depth interviews to tease out motivations and read these against a range of theoretical propositions about creativity. In particular, we focus on the construct of “elite panic” and the degree to which this appeared to be evident in the Christchurch earthquakes context. Bureaucratic attempts to control or limit creativity were present but they did not produce a completely blanket dampening effect. Certain individuals and groups seemed to be pre-equipped to navigate or ignore potential blocks to creativity. We argue, using Geir Kaufmann’s novelty-creativity matrix and aspects of Teresa Amabile’s and Michael G. Pratt’s revised componential theory of creativity that a special form of disaster creativity does exist.
Artificial Neural Networks (ANN) as a tool offers opportunities for modeling the inherent complexity and uncertainty associated with socio-environmental systems. This study draws on New Zealand ski
fields (multiple locations) as socio- environmental systems while considering their perceived resilience to low
probability but potential high consequences catastrophic natural events (specifically earthquakes). We gathered
data at several ski fields using a mixed methodology including: geomorphic assessment, qualitative interviews,
and an adaptation of Ozesmi and Ozesmi’s (2003) multi-step fuzzy cognitive mapping (FCM) approach. The data
gathered from FCM are qualitatively condensed, and aggregated to three different participant social groups. The
social groups include ski fields users, ski industry workers, and ski field managers. Both quantitative and
qualitative indices are used to analyze social cognitive maps to identify critical nodes for ANN simulations. The
simulations experiment with auto-associative neural networks for developing adaptive preparation, response and
recovery strategies. Moreover, simulations attempt to identify key priorities for preparation, response, and
recovery for improving resilience to earthquakes in these complex and dynamic environments. The novel mixed
methodology is presented as a means of linking physical and social sciences in high complexity, high uncertainty
socio-environmental systems. Simulation results indicate that participants perceived that increases in Social
Preparation Action, Social Preparation Resources, Social Response Action and Social Response Resources have
a positive benefit in improving the resilience to earthquakes of ski fields’ stakeholders.
On 4 September 2010, a 7.1 magnitude earthquake struck near Darfield, 40 kilometres west of Christchurch, New Zealand. The quake caused significant damage to land and buildings nearby, with damage extending to Christchurch city. On 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, causing extensive and significant damage across the city and with the loss of 185 lives. Years on from these events, occasional large aftershocks continue to shake the region.
Two main entomological collections were situated within close proximity to the 2010/11 Canterbury earthquakes. The Lincoln University Entomology Research Collection, which is housed on the 5th floor of a 7 storey building, was 27.5 km from the 2010 Darfield earthquake epicentre. The Canterbury Museum Entomology Collection, which is housed in the basement of a multi-storeyed heritage building, was 10 km from the 2011 Christchurch earthquake epicentre. We discuss the impacts of the earthquakes on these collections, the causes of the damage to the specimens and facilities, and subsequent efforts that were made to prevent further damage in the event of future seismic events. We also discuss the wider need for preparedness against the risks posed by natural disasters and other catastrophic events.
The 2013 Seddon earthquake (Mw 6.5), the 2013 Lake Grassmere earthquake (Mw 6.6), and the 2016 Kaikōura earthquake (Mw 7.8) provided an opportunity to assemble the most extensive damage database to wine storage tanks ever compiled worldwide. An overview of this damage database is presented herein based on the in-field post-earthquake damage data collected for 2058 wine storage tanks (1512 legged tanks and 546 flat-based tanks) following the 2013 earthquakes and 1401 wine storage tanks (599 legged tanks and 802 flat-based tanks) following the 2016 earthquake. Critique of the earthquake damage database revealed that in 2013, 39% and 47% of the flat-based wine tanks sustained damage to their base shells and anchors respectively, while due to resilience measures implemented following the 2013 earthquakes, in the 2016 earthquake the damage to tank base shells and tank anchors of flat-based wine tanks was reduced to 32% and 23% respectively and instead damage to tank barrels (54%) and tank cones (43%) was identified as the two most frequently occurring damage modes for this type of tank. Analysis of damage data for legged wine tanks revealed that the frame-legs of legged wine tanks sustained the greatest damage percentage among different parts of legged tanks in both the 2013 earthquakes (40%) and in the 2016 earthquake (44%). Analysis of damage data and socio-economic findings highlight the need for industry-wide standards, which may have socio-economic implications for wineries.
Brooklands Lagoon / Te Riu o Te Aika Kawa (‘Brooklands’) is an important wetland and estuarine ecosystem in Canterbury. It is a site of cultural significance to Ngāi Tūāhuriri, and is also valued by the wider community. Home to an array of life, it is connected to the Pūharakekenui/Styx and Waimakariri rivers, and is part of a wetland landscape complex that includes the Avon-Heathcote / Ihutai estuary to the south and the Ashley / Rakahuri estuary to the north. Notionally situated within the territorial boundary of Christchurch City Council and jurisdictionally encompassed by the regional council Environment Canterbury, it has been legally determined to be part of the coastal marine area. The complicated administrative arrangements for the lagoon mirror the biophysical and human challenges to this surprisingly young ecosystem since its formation in 1940.
Here we present a synthesis of the historical events and environmental influences that have shaped Brooklands Lagoon. Before existing as an intertidal ecosystem, the Waimakariri river mouth was situated in what is now the southern end of the lagoon. A summary timeline of key events is set out in the table below. These included the diversion of the Waimakariri River mouth via the construction of Wrights Cut in the 1930s, which influenced the way that the lower reaches of the river interacted with the land and sea. A large flood in 1940 shifted the river mouth ~2 to 3 kilometres north, that created the landscape that we see today. However, this has not remained stable, as the earthquake sequence in 2010 and 2011 subsided the bed of the estuary.
The changes are ongoing, as sea level rise and coastal inundation will place ongoing pressure on the aquatic ecosystem and surrounding land. How to provide accommodation space for Brooklands as an estuary will be a key planning and community challenge, as Environment Canterbury begins the engagement for the review of its Regional Coastal Plan. There is also a requirement to safeguard its ecological health under the 2020 National Policy Statement on Freshwater Management. This will necessitate an integrated mountains to sea (ki uta ki tai) management approach as the lagoon is affected by wider catchment activities. We hope that this report will contribute to, and inform these processes by providing a comprehensive historical synthesis, and by identifying considerations for the future collaborative management of Brooklands Lagoon, and protection of its values. In essence, we suggest that Te Riu o Te Aika Kawa deserves some sustained aroha.
Nature has endowed New Zealand with unique geologic, climatic, and biotic conditions. Her volcanic cones and majestic Southern Alps and her verdant plains and rolling hills provide a landscape as rugged and beautiful as will be found anywhere. Her indigenous fauna and flora are often quite different from that of the rest of the world and consequently have been of widespread interest to biologists everywhere. Her geologic youth and structure and her island climate, in combination with the biological resources, have made a land which is ecologically on edge. These natural endowments along with the manner in which she has utilized her land, have given New Zealand some of the most spectacular and rapid erosion to be found.
It is quite evident that geologic and climatic conditions combine to give unusually high rates of natural erosion. Present topographic features indicate the past occurrence of large-scale flooding as well. Prior to the arrival of the Maori, it is very likely that most of the land mass of New Zealand below present bush lines was covered with indigenous bush or forest. Forest fires of a catastrophic nature undoubtedly occurred as a result of lightning, and volcanic eruptions. The exposed soils left by these catastrophes contributed to natural deterioration. While vast areas of forest cover were destroyed, they probably were healed by nature with forest or with grass or herbaceous cover. Further, it is probable that large areas in the mountains were, as they are now, subject to landslides and slipping due to earthquakes and excessive local rainfall. Again, the healing process was probably rapid in most of such exposed areas.
This study explores the role and value of urban community gardens following a major crisis: the 2010/11 earthquakes in Christchurch, New Zealand.
The devastating earthquakes of September 2010 and February 2011 have without question upset the Christchurch City way of life for all. Families and businesses, as well as the natural and built environments have been directly affected, and our social landscapes have since evolved to accommodate the visible changes. Though not perhaps seen as a priority, the Christchurch nightlife has been profoundly altered by the quakes and the once popular CBD clubbing scene has ceased to exist. The concern highlighted in this article is the way in which this has put pressure on suburban bars and the the implications of this for local residents.
The Kaikoura earthquake in November 2016 highlighted the vulnerability of New Zealand’s rural communities to locally-specific hazard events, which generate regional and national scale impacts. Kaikoura was isolated with significant damage to both the east coast road (SH1) and rail corridor, and the Inland Road (Route 70). Sea bed uplift along the coast was significant – affecting marine resources and ocean access for marine operators engaged in tourism and harvesting, and recreational users. While communities closest to the earthquake epicentre (e.g., Kaikoura, Waiau, Rotherham and Cheviot) suffered the most immediate earthquake damage, the damage to the transport network, and the establishment of an alternative transport route between Christchurch and Picton, has significantly impacted on more distant communities (e.g., Murchison, St Arnaud and Blenheim). There was also considerable damage to vineyard infrastructure across the Marlborough region and damage to buildings and infrastructure in rural settlements in Southern Marlborough (e.g., Ward and Seddon).
This report reviews the literature on regeneration requirements of main canopy
tree species in Westland. Forests managed for production purposes have to be
harvested in an ecologically sustainable way; to maintain their natural character, harvesting should facilitate regeneration of target species and ensure that their recruitment is in proportion to the extent of extraction. The reasons for species establishing at any point in time are unclear; however, they are probably related to the availability of suitable microsites for establishment, the size of the canopy openings formed by disturbance, and whether or not seeds are available at or around the time of the disturbance. Age structures from
throughout Westland show that extensive, similar-aged, post-earthquake cohorts of trees are a feature of the region. This suggests that infrequent, massive earthquakes are the dominant coarse-scale disturbance agent, triggering episodes of major erosion and sedimentation and leaving a strong imprint in the forest structure. In other forests, flooding and catastrophic
windthrow are major forms of disturbance. The findings suggest that, in general, large disturbances are required for conifer regeneration. This has implications for any sustained yield management of these forests if conifers are to remain an important component. Any harvesting should recognise the importance for tree establishment of: forest floor microsites, such as fallen logs
and tree tip-up mounds; and the variable way in which canopy gaps are formed. Harvesting should maintain the 'patchy' nature of the natural forest—large patches of dense conifers interspersed with more heterogeneous patches of mixed species.This is a client report commissioned by West Coast Conservancy and funded from the Unprogrammed Science Advice fund.
The paper examines community benefits provided by an established community garden following a major earthquake and discusses possible implications for community garden planning and design in disaster-prone cities. Recent studies show that following extreme storm events community gardens can supply food, enhance social empowerment, provide safe gathering spots, and restorative practices, to remind people of normality. However, the beneficial role played by community gardens following earthquakes is less well known. To fill this gap, the study examines the role played by a community garden in Christchurch, New Zealand, following the 2010/2011 Canterbury Earthquakes. The garden's role is evaluated based on a questionnaire-based survey and in-depth interviews with gardeners, as well as on data regarding the garden use before and after the earthquakes. Findings indicate the garden helped gardeners cope with the post-quake situation. The garden served as an important place to de-stress, share experiences, and gain community support. Garden features that reportedly supported disaster recovery include facilities that encourage social interaction and bonding such as central meeting and lunch places and communal working areas.
Study region: Christchurch, New Zealand.
Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km²), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
The New Zealand Kellogg Rural Leaders Programme develops emerging agribusiness leaders to help shape the future of New Zealand agribusiness and rural affairs. Lincoln University has been involved with this leaders programme since 1979 when it was launched with a grant from the Kellogg Foundation, USA.On 2 March 1987 the Bay of Plenty region suffered an earthquake
of magnitude 6.3 on the Richter scale, centred at Edgecumbe.
Severe damage to personal and industrial property and
drainage systems occurred.
In hindsight, although much of the damage was covered by insurance,
loans, public and government contributions, the continuing
reconstruction costs have had a tremendous impact financially
on individuals and the District as a whole.
By highlighting some of these ongoing costs and suggestions of
alternatives other Rural communities may be better prepared to
lessen the effect of a natural disaster such as the Edgecumbe
Earthquake of 1987.
Global biodiversity is threatened by human actions, including in urban areas. Urbanisation has removed and fragmented indigenous habitats. As one of the 25 biodiversity ’hot spots’, New Zealand is facing the problems of habitat loss and indigenous species extinction. In New Zealand cities, as a result of the land clearance and imported urban planning precepts, many urban areas have little or no original native forest remaining. Urbanisation has also been associated with the introduction of multitudes of species from around the world.
Two large earthquakes shook Christchurch in 2010 and 2011 and caused a lot of damage. Parts of the city suffered from soil liquefaction after the earthquakes. In the most damaged parts of Christchurch, particularly in the east, whole neighbourhoods were abandoned and later demolished except for larger trees.
Christchurch offers an excellent opportunity to study the biodiversity responses to an urban area with less intensive management, and to learn more about the conditions in urban environments that are most conducive to indigenous plant biodiversity.
This study focuses on natural woody plant regeneration of forested sites in Christchurch city, many of which were also surveyed prior to the earthquakes. By repeating the pre-earthquake surveys, I am able to describe the natural regeneration occurring in Christchurch forested areas. By combining this with the regeneration that has occurred in the Residential Red Zone, successional trajectories can be described under a range of management scenarios. Using a comprehensive tree map of the Residential Red Zone, I was also able to document minimum dispersal distances of a range of indigenous trees in Christchurch. This is important for planning reserve connectivity. Moreover, I expand and improve on a previous analysis of the habitat connectivity of Christchurch (made before the earthquakes) to incorporate the Residential Red Zone, to assess the importance for habitat connectivity of restoring the indigenous forest in this area. In combination, these data sets are used to provide patch scenarios and some management options for biodiversity restoration in the Ōtākaro-Avon Red Zone post-earthquake.
The impact of the Canterbury earthquake sequence of 2010-12 and its aftermath has been enormous. This inventory lists some of the thousands of community-led groups and initiatives across the region that have developed or evolved as a result of the quake. This inventory is the third such inventory to have been produced. The Christchurch Earthquake Activity Inventory was released by Landcare Research in May 2011, three months after the devastating 22 February 2011 earthquake. The second inventory, entitled An Inventory of Community-led Recovery Initiatives in Canterbury, was collated by Bailey Peryman and Dr Suzanne Vallance (Lincoln University) approximately one year after the February earthquake. The research for this third inventory was undertaken over a four month period from June to September 2013, and was conducted primarily through online searches.This research was undertaken with funding support from the Natural Hazards Platform and GNS, New Zealand.
While there are varying definitions of the term ‘social cohesion’, a number of common themes regularly surface to describe what cohesive societies look like. Previous studies using known indicators of social cohesion have often been conducted at the international level for cross-country comparison, while there has been less focus on social cohesion within countries. The purpose of this research is to identify if indicators of social cohesion can be used to map trends at the city level in order to draw meaningful conclusions, particularly in the aftermath of a natural disaster. Using known indicators of social cohesion and Christchurch City as the basis for this study, variations in social cohesion have been found within the city wards, that preceded but were affected by the events of the Canterbury earthquakes during 2010/11. These findings have significant policy implications for the future of Christchurch, as city leaders work towards the recovery of and subsequent rebuilding of communities.
The topic of ‘resilience’ thinking seems of late to have superseded that of ‘sustainability’ thinking. Sustainability means simply that which sustains and lasts but has taken on many different subtle nuances over the last 20 years since it came into common parlance with the Bruntland Report of 1987, which sought to clarify the definition. However, resilience ‘speak’ has become hot property now, especially highlighted since Christchurch experienced a natural disaster in the form of several large earthquakes from Sep 2010 until most recently in December 2011. Many people comment on how resilient people have been, how resilient the city has been, so it seems timely to investigate what resilience actually means and importantly, resilient to what and of what? (Lorenz, 2010).
This essay will look at the concept of systems and resilience, definitions and theories will be explored generally and then these concepts will be more closely defined within the context of a particular system, that of Somerfield School located in the western suburbs of Christchurch.
An emerging water crisis is on the horizon and is poised to converge with several other impending problems in the 21st century. Future uncertainties such as climate change, peak oil and peak water are shifting the international focus from a business as usual approach to an emphasis on sustainable and resilient strategies that better meet these challenges. Cities are being reimagined in new ways that take a multidisciplinary approach, decompartmentalising functions and exploring ways in which urban systems can share resources and operate more like natural organisms. This study tested the landscape design implications of wastewater wetlands in the urban environment and evaluated their contribution to environmental sustainability, urban resilience and social development. Black and grey water streams were the central focus of this study and two types of wastewater wetlands, tidal flow (staged planning) and horizontal subsurface flow wetlands were tested through design investigations in the earthquake-affected city of Christchurch, New Zealand. These investigations found that the large area requirements of wastewater wetlands can be mitigated through landscape designs that enhance a matrix of open spaces and corridors in the city.
Wastewater wetlands when combined with other urban and rural services such as food production, energy generation and irrigation can aid in making communities more resilient. Landscape theory suggests that the design of wastewater wetlands must meet cultural thresholds of beauty and that the inclusion of waste and ecologies in creatively designed landscapes can deepen our emotional connection to nature and ourselves.