Object Overview: Greendale Fault: investigation of surface rupture charact…
Articles, UC QuakeStudies
Object Overview of 'Greendale Fault: investigation of surface rupture characteristics for fault avoidance zonation (Villamor et al, 2011).'
Object Overview of 'Greendale Fault: investigation of surface rupture characteristics for fault avoidance zonation (Villamor et al, 2011).'
This report provided information on the location and character of the Ostler Fault Zone near Twizel. The fault traces, and associated recommended fault avoidance zones, were mapped in detail for inclusion in a District Plan Change for the Twizel area. The Ostler Fault Zone was mapped in detail because of the higher likelihood of movement on that fault than others in the district, and the potential for future development across the fault zone because of its proximity to Twizel. See Object Overview for background and usage information. The report recommended that the information be incorporated into the District Plan Change and that site-specific investigations be undertaken before development is allowed within the fault avoidance zones. These recommendations were taken up by Mackenzie District Council.
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.
This report provides information on the locations and character of active geological faults and folds in Ashburton District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of permanent fault movement at the ground surface, and where more detailed investigations should be done if development is proposed in that area (depending on the potential activity of the fault and the type of development proposed). See Object Overview for background and usage information. Most of the faults and folds identified at the ground surface in Ashburton District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region.
This report provides information on the locations and character of active geological faults and folds in Mackenzie District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of fault movement, and where more detailed investigations should be done if development is proposed in that area(depending on the potential activity of the fault and the type of development proposed). Most of the faults and folds identified at the ground surface in Mackenzie District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region. See Object Overview for background and usage information.
Object Overview of 'Fault mapping studies.'
Object Overview of 'Hunter Hills Fault Zone study – Earthquake hazard assessment (Yetton, 2008).'
This report describes the earthquake hazard in Waimate and Mackenzie districts and the part of Waitaki district within Canterbury, and gives details of historic earthquakes. It includes district-scale (1:500,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.2-7.4 Ostler Fault earthquake near Twizel, a magnitude 8 Alpine Fault earthquake, and a magnitude 6.9 Hunters Hills Fault Zone earthquake near Waimate. See Object Overview for background and usage information.
Object Overview of 'General distribution and characteristics of active faults and folds in the Mackenzie District, South Canterbury (Barrell and Strong, 2010).'
Object Overview of 'Assessment of active fault and fold hazards in the Twizel area, Mackenzie District, South Canterbury (Barrell, 2010).'
This report describes the earthquake hazard in Ashburton district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Mt Hutt-Mt Peel Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.
This report describes the earthquake hazard in Selwyn district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Porters Pass-Amberley Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.
This report describes the earthquake hazard in Timaru district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes earthquake scenarios for a magnitude 7.0-7.3 earthquake on the Mt Hutt-Mt Peel Fault Zone and a magnitude 8 Alpine Fault earthquake. See Object Overview for background and usage information.
Object Overview of 'General distribution and characteristics of active faults and folds in the Ashburton District, mid-Canterbury (Barrell and Strong, 2009).'
A report by Thomas Wilson, Zach Whitman, Matt Cockcroft, Mike Finnemore, Peter Almond, Derrick Moot, et al on various remediation techniques for farms on the Greendale fault scarp. The purpose of the report was to brief the Rural Recovery Group on 20 September 2010.
Page 11 of Section A of the Christchurch Press, published on Saturday 11 September 2010.
This study compiled and tabulated all relevant available information on earthquake sources (active faults) in Canterbury and mapped the fault locations onto 1:50,000 or 1:250,000 overlays on topographic maps (later digitised into the Environment Canterbury active faults database). The study also reviewed information on historic earthquakes, instrumental seismicity and paleoseismic studies and identified information gaps. It recommended an approach for a probabilistic seismic hazard analysis and development of earthquake scenarios. See Object Overview for background and usage information.
A report by Thomas Wilson, Peter Almond, Derrick Moot, Zach Whitman, Rose Turnbull, et al summarising a reconnaissance survey of farms on the Greendale fault. The purpose of the report was to inform farm and societal recovery. It was presented at a Rural Recovery Group meeting on 13 September 2010.
This report describes the earthquake hazard in Kaikoura district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. The report describes an earthquake scenario for a magnitude 7.0-7.3 Hope Fault earthquake near Kaikoura, and a subsequent local tsunami.
This study updated and superseded Earthquake hazard and risk assessment study Stage 1 Part A: Earthquake source identification and characterisation (Pettinga et al, 1998). It compiled and tabulated all relevant available information on earthquake sources in Canterbury and updated the active faults database with new fault locations and information. See Object Overview for background and usage information.
This report was the first report in the district series, and has a different format to later reports. It includes all natural hazards, not only earthquake hazards. It describes earthquake, flooding, meteorological, landslide and coastal hazards within Hurunui district and gives details of historic events. It includes district-scale (1:250,000) active fault and flood hazard maps. The report describes an earthquake scenario for a magnitude 6.9 earthquake near Cheviot, as well as flooding, meteorological, landslide, coastal erosion, storm surge, and tsunami scenarios. See Object Overview for background and usage information.
PDF slides from a presentation given by Dr. Thomas Wilson from the UC Geology department on 27 October 2010.
This report describes the earthquake hazard in Waimakariri district and gives details of historic earthquakes. It includes district-scale (1:250,000) active fault, ground shaking zone, liquefaction and landslide susceptibility maps. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This report was the first report in the district series, and has a different format to later reports. It includes all natural hazards, not only earthquake hazards. It describes earthquake, flooding, meteorological, landslide and coastal hazards within Hurunui district and gives details of historic events. It includes district-scale (1:250,000) active fault and flood hazard maps. The report describes an earthquake scenario for a magnitude 6.9 earthquake near Cheviot, as well as flooding, meteorological, landslide, coastal erosion, storm surge, and tsunami scenarios.
This study analysed liquefaction susceptibility and estimated ground settlements for two earthquake scenarios (foothills and Alpine Fault) for eastern Waimakariri District. The report was later partially superseded by Earthquake hazard assessment for Waimakariri District (Yetton and McCahon, 2009), which while not using such detailed analytical methods as the 2000 Beca report, reviewed new information available since 2000 (including that collected as part of the Pegasus Town development). This showed that the liquefaction susceptibility in eastern Waimakariri district was in fact much more variable than suggested in the 2000 Beca maps, and that liquefaction susceptibility was extremely difficult to predict without a site-specific investigation. See Object Overview for background and usage information.
This study led on from Earthquake hazard and risk assessment study Stage 1 Part A: Earthquake source identification and characterisation (Pettinga et al, 1998). It used the location and characteristics of active faults in the Canterbury region, and the historic record of earthquakes to estimate levels of ground shaking (MM intensity, peak ground acceleration and spectral accelerations) across Canterbury for different return periods. The study also provided earthquake scenarios for selected towns and cities in Canterbury, and undertook detailed investigations into the largest historic earthquakes in Christchurch and parts of the Canterbury region. See Object Overview for background and usage information.