Embassy Science Fellowship Program Focuses on Earthquake Research
Articles, UC QuakeStudies
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Embassy Science Fellowship Program Focuses on Earthquake Research".
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Embassy Science Fellowship Program Focuses on Earthquake Research".
A paper which details earthquake expectation data, supplied to SCIRT by GNS Science.
An entry from Jennifer Middendorf's blog for 23 July 2014 entitled, "Art and Science".
A presentation by Emma Kelland titled, "Masters in Environmental Science 690, Department of Geography". The presentation outlined the research Emma would undertake alongside Dr Deirdre Hart as part of her Masters Thesis.
A research report by Ju-Ting (Tania) Lee written in 2013 during her studies towards a Bachelor of Applied Science at Unitec Institute of Technology. The report explores the effects of the Christchurch earthquakes on the behaviour and well-being of cats and dogs, according to their owners.
Transcript of Brenda's earthquake story, captured by the UC QuakeBox project.
Transcript of June's earthquake story, captured by the UC QuakeBox project.
Transcript of Barbara's earthquake story, captured by the UC QuakeBox project.
Transcript of Edel Walker's earthquake story, captured by the UC QuakeBox project.
Transcript of Al Park's earthquake story, captured by the UC QuakeBox project.
Transcript of Sara Templeton's earthquake story, captured by the UC QuakeBox project.
Transcript of Katrina Lyman's earthquake story, captured by the UC QuakeBox project.
A presentation by Dr Deirdre Hart at the New Zealand Coastal Science 20th Annual Conference. The presentation is titled, "Coastal Quakes: New Zealand's underrated hazard complex".
This report provides information on the locations and character of active geological faults and folds in Ashburton District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of permanent fault movement at the ground surface, and where more detailed investigations should be done if development is proposed in that area (depending on the potential activity of the fault and the type of development proposed). See Object Overview for background and usage information. Most of the faults and folds identified at the ground surface in Ashburton District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region.
This report assesses issues and options for preparing an earthquake hazard and risk assessment programme for Canterbury. It outlines investigation options and associated costs in order to better understand Canterbury's earthquake hazard and risk. Although earthquake hazard and risk information needs and investigation priorities within Canterbury have changed over the past 15 years, the majority of the report’s recommended components have been undertaken to some degree either by Environment Canterbury or other organisations. See Object Overview for background and usage information.
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This report provides information on the locations and character of active geological faults and folds in Mackenzie District. The faults are mapped at a district scale and the information is intended to highlight areas where there is a risk of fault movement, and where more detailed investigations should be done if development is proposed in that area(depending on the potential activity of the fault and the type of development proposed). Most of the faults and folds identified at the ground surface in Mackenzie District are in rural or very sparsely populated areas. In addition, most of the faults have relatively long recurrence intervals (long-term average time between fault movements) in the order of several thousand years. Following the Ministry for the Environment Active Fault Guidelines, normal residential development would be allowed on or near faults with recurrence intervals this long. There are no recommendations associated with this report. The information in the report will be reviewed as required, after the remaining district reports are completed in the region. See Object Overview for background and usage information.
This study updated the 1999 Earthquake hazard and risk assessment study Stage 1 Part B: Probabilistic seismic hazard assessment and Earthquake scenarios for the Canterbury region, and historic earthquakes in Christchurch report. It incorporated new fault data, a new distributed seismicity model and new methods for estimating Modified Mercalli intensities. See Object Overview for background and usage information.
This report provided information on the location and character of the Ostler Fault Zone near Twizel. The fault traces, and associated recommended fault avoidance zones, were mapped in detail for inclusion in a District Plan Change for the Twizel area. The Ostler Fault Zone was mapped in detail because of the higher likelihood of movement on that fault than others in the district, and the potential for future development across the fault zone because of its proximity to Twizel. See Object Overview for background and usage information. The report recommended that the information be incorporated into the District Plan Change and that site-specific investigations be undertaken before development is allowed within the fault avoidance zones. These recommendations were taken up by Mackenzie District Council.
A reconnaissance report on the 4 September 2010 earthquake. The report was compiled by a team from the US National Science Foundation-sponsored Geotechnical Extreme Events Reconnaissance (GEER) Association.
A reconnaissance report on the 22 February 2011 earthquake. The report was compiled by a team from the US National Science Foundation-sponsored Geotechnical Extreme Events Reconnaissance (GEER) Association.
A dissertation by Lev Zhuravsky submitted as partial fulfillment of the requirements for the degree of Master of Health Sciences Endorsed in Health Management, University of Otago, Dunedin, New Zealand.
PDF slides from a presentation given by Dr. Thomas Wilson from the UC Geology department on 22 November 2010. The presentation was delivered at a GeoNZ conference in Auckland.
A dissertation submitted by Cameron McLeod in fulfilment of an Honours degree in Diplomacy, covering community response and recovery in Lyttelton following the Canterbury Earthquakes. Dissertation supervised by Dr Bronwyn Hayward, University of Canterbury School of Social and Political Sciences.
Object Overview for 'Selwyn District engineering lifelines project: Earthuake hazard assessment'
Object Overview of 'Earthquake Hazard Assessment for Waimate, Mackenzie and part Waitaki districts (Yetton & McCahon, 2008).'
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Friends Helping Friends".
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Craig Weaver Remembers February 22nd".
A report covering the effects of the Canterbury earthquakes upon Avon-Heathcote Estuary Ihutai ecology.