Evolution of the Leader River in response to a landslide dam, triggered by the 2016 Mw 7.8 Kaikōura earthquake.

The North Canterbury and Marlborough regions of Aotearoa | New Zealand were severely impacted by almost 30,000 landslides triggered during the 2016 Kaikōura Earthquake. Of these landslides approximately 200 dammed rivers. In the study area near Waiau, rupture of The Humps and Leader faults (and associated ground motions) initiated at least 42 co-seismic landslides. The Leader Landslide is the largest of these landslides, with an area of approximately 600,000 m2 and a volume of 6-8 million m3. The landslide buried approximately 980 m of active Leader River bed length and dammed the river. The dam produced four lakes, with two remaining today and two having been breached by partial landslide collapse and knickpoint migration in the year following the earthquake. As of 2025, the landslide dam has not been completely breached and Lake Rebekah remains. The Leader Landslide dam presents a unique opportunity to chart the evolution of the active riverbed pre- and post-earthquake, for up to 2 km downstream of Lake Rebekah. The river’s evolutionary timeline was observed using LiDAR, satellite aerial imagery, and drone surveys from 2001 to 2024 to develop maps and topographic difference models. Key timeframes for riverbed change events were also constrained with information and dated photography gathered from previous communications with the landowners at Woodchester Station, where the landslide is located. Finally, Schmidt Hammer testing of the Pliocene-Miocene Greta Siltstone Formation was conducted to investigate the role of bedrock strength on the rate of riverbed erosion. I present the history of evolution of the Leader River, pre- and post-earthquake, and consider factors impacting riverbed morphology changes. Despite the stability of Lake Rebekah, these data show that the position and morphology of the Leader River has changed significantly in response to the landslide, with the formation of two knickpoint waterfalls up to 14 m-high, four waterbodies, and diversion of the river around the landslide toe. Evolution of the river is characterised by longer periods of stasis (e.g., months to years) punctuated by rapid changes in riverbed morphology (e.g., hours to weeks) associated with incision and aggradation. In particular, the knickpoints migrated upstream at variable spatial and temporal rates. Factors controlling the rates of processes include; rain-storm events, partial lake outburst flooding, spatial changes in Pliocene-Miocene siltstone bed induration and landowner intervention to stabilise the landslide dam. An overarching conclusion of this thesis is that landforms can develop rapidly (i.e., hours to weeks) and in the absence of historical accounts, could be interpreted to have formed over hundreds to thousands of years.

View the original item