Disaster waste in Waitaha – Canterbury : estimating hazard specific volumes and informing management considerations.

Effective management of waste and debris generated by a disaster event is vital to ensure rapid and efficient response and recovery that supports disaster risk reduction (DRR). Disaster waste refers to any stream of debris that is created from a natural disaster that impacts the environment, infrastructure, and property. This waste can be problematic due to extensive volumes, environmental contamination and pollution, public health risks, and the disruption of response and recovery efforts. Due to the complexities in dealing with these diverse and voluminous materials, having disaster waste management (DWM) planning in place pre-event is crucial. In particular, coordinated, interagency plans that have been informed by estimates of waste volumes and types are vital to ensure management facilities, personnel, and recovery resources do not become overwhelmed. Globally, a priority when formulating DWM plans is the robust estimation of disaster waste stream types and volumes. This is a relatively under-researched area, despite the growing risk of natural disasters and increasingly inadequate waste management facilities. In Aotearoa New Zealand, a nation-wide DWM planning tool has been proposed for local government use, and waste amounts from events such as the Christchurch Earthquakes have been estimated. However, there has been little work undertaken to estimate waste types and volumes with a region-specific, multi-hazard focus, which is required to facilitate detailed regional DWM planning. This research provides estimates of potential disaster waste volumes and types in the Waitaha-Canterbury region of the South Island (Te Waipounamu) for three key hazard scenarios: a M8.0 Alpine Fault earthquake with a south-to-north rupture pattern, a far-sourced tsunami using a maximum credible event model for a Peru-sourced event, and major flooding using geospatial datasets taken from available local government modelling. Conducted in partnership with Environment Canterbury and Canterbury CDEM, this estimation work informed stakeholder engagement through multi-agency workshops at the district level. This research was comprised of two key parts. The first was enhancing and extending a disaster waste estimation model used in Wellington and applying it to the Canterbury region to quantify waste volumes and types. The second part was using this model and its estimates to inform engagement with stakeholders in multi-agency, district-level workshops in Kaikōura, Hurunui, and Waimakariri. In these workshops, the waste estimates were used to catalyse discussion around potential issues associated with the management of disaster waste. Regionally, model estimates showed that the earthquake scenario would generate the highest total volume of disaster waste (1.94 million m³), compared to the tsunami scenario (1.89 million m³) and the flood scenario (173,900 m³). Flood waste estimates are likely underrepresented due to limited flood modelling coverage, but still provide a valuable comparison. Whilst waste estimates differ significantly between districts, waste volumes were shown to be not solely dependent on building/population density. The district-level workshops showed that DWM challenges revolved around logistical constraints, public concerns, governance complexities, and environmental issues. Future work should further enhance this estimation model and apply it to other regions of Aotearoa New Zealand, to help develop a set of cohesive DWM plans for each region. The waste estimation model could also be adapted and applied internationally. The findings from this research provide a foundation for advancing DWM planning and stakeholder engagement in the Waitaha-Canterbury region. By offering region-specific waste estimates across multiple hazard scenarios, this work supports district councils and emergency managers in developing informed, proactive strategies for disaster preparedness and response. The insights gained from district-level workshops highlight key challenges that must be addressed in future planning. These outcomes contribute to a broader research agenda for DWM in Aotearoa New Zealand, and offer a framework adaptable to international contexts.

View the original item