Risk-targeted seismic design of buckling-restrained braced frame buildings.

According to TS 1170.5, designing a building to satisfy code-prescribed criteria (e.g., drift limit, member safety, P-Δ stability) at the ultimate limit state and relying on the inherent margins within the design code would lead to an acceptable mean annual frequency of collapse (λ꜀) in the range of 10−⁴ to 10−⁵. Modern performance objectives, such as λ꜀ and expected annual loss (EAL), are not explicitly considered. Although buckling-restrained braced frame (BRBF) buildings were widely adopted as lateral load-resisting systems for office and car park buildings in the Christchurch rebuild following the Canterbury earthquakes in New Zealand, there are currently no official guidelines for their design. The primary focus of this study is to develop a risk-targeted design framework for BRBF buildings that can achieve the performance objectives desired by stakeholders. To this extent, key factors influencing λ꜀ and EAL of BRBF buildings are identified. These factors include gusset plate design, number of storeys, design drift limit, BRBF beam-column connection, brace configuration, brace angle, brace material grade, and analysis method (equivalent lateral force vs. modal response spectrum). A novel 3D BRBF modelling approach capable of simulating out-of-plane buckling failure of buckling-restrained brace (BRB) gusset plates is developed. Prior experimental studies on sub-assemblies conducted elsewhere have demonstrated that gusset plates and end zones may buckle out of plane prematurely, before BRBs reach their maximum axial compression load carrying capacity. Current 2D BRBF macro models, typically used in research, cannot simulate this failure mode. A conventional 2D BRBF model underestimates the λ꜀ of a case-study 4-storey super-X configured steel BRBF building (designed according to NZS-3404) by a factor of two compared to the estimate from the proposed 3D model. These findings suggest that the current NZS-3404 gusset plate design method may undersize gusset plates and that using a 2D BRBF model in this case can significantly underestimate λ꜀. Three improved alternative gusset plate design methods that are easy to implement in practice are identified from the literature. Gusset plates in two case-study 4-storey steel BRBF buildings with super-X and diagonal configurations are designed using both the NZS-3404 method and alternative methods. All three alternative design methods are found to be conservative, resulting in an almost three-fold lower λ꜀ for both case-study BRBF buildings compared to those designed using the NZS-3404 method. Analysis results indicate that (i) bidirectional interaction has no significant effect on gusset plate buckling and (ii) mid-span gusset plates are more susceptible to buckling than corner gusset plates. A framework for seismic loss assessment using incremental dynamic analysis (IDA), called loss-oriented hazard-consistent incremental dynamic analysis (LOHC-IDA), is developed. IDA can be conducted with a generic record set, eliminating the arduous site-specific record selection required to conduct multiple stripe analysis (MSA). Traditional IDA, however, is limited in producing hazard-consistent estimates of engineering demand parameters (EDPs), which LOHC-IDA overcomes. LOHC-IDA improves upon existing methods by: (i) incorporating correlations among engineering demand parameters across intensity levels and (ii) using peak ground acceleration (PGA) to predict peak floor acceleration (PFA). For two case-study steel BRBF buildings, LOHC-IDA estimates the EAL and loss distributions conditioned on the intensity level that closely match the MSA results, with an average absolute error of 5%. The influence of factors beyond gusset plate design on the λ꜀ and EAL of 26 case-study steel BRBF buildings (designed in accordance with TS 1170.5) is examined. Hazard-consistent λ꜀ and EAL for these buildings are estimated using the FEMA P-58 loss and risk assessment framework. Among the 26 case-study buildings, 23 satisfy the maximum code-specified λ꜀ limit of 10−⁴. The EAL, normalised by the total building replacement cost, is highest for 2-storey BRBFs (0.22% on average), followed by 4-storey BRBFs (0.16% on average) and 8-storey BRBFs (0.11% on average). Reducing the design drift limit has the most significant effect on lowering λ꜀ (all BRBF designs were drift governed), followed by transitioning from pinned to moment-resisting beam-column connections, reducing the brace angle, and increasing brace strength. BRBF buildings designed using the equivalent lateral force method, on average, have a lower λ꜀ compared to those designed using the modal response spectrum method. Diagonally configured BRBFs exhibit the lowest λ꜀, followed by super- X and chevron configured BRBFs. Most design variables, apart from drift limit and beam-column connection, have limited influence on EAL. A simple method for EDP-targeted design of steel BRBF buildings is proposed. For this purpose, linear regression and CatBoost machine learning models are developed to predict steel BRBF building EDPs using peak storey drift ratio (PSDR) and PFA estimates from the 26 case-study buildings at intensity levels ranging from 80% to 0.5% probability of exceedance in 50 years. The R²ₐₔⱼ of these models is around 0.98, while the average prediction error is less than 10%. Fundamental period (T₁), total building height (Hₜ), and pseudospectral acceleration at T₁, denoted as Sₐ(T₁), are selected as the features to predict PSDR, while T₁, Hₜ, and PGA are the features selected to predict PFA. The EDP-targeted design has three steps: (i) for a given Hₜ value, the PSDR prediction model is used to identify a suitable T₁ that can achieve a desired PSDR target at the design intensity, (ii) a force-based design is then conducted iteratively to achieve the target T₁ by using an appropriate ductility factor and design drift limit, and (iii) based on the T₁ in the final design iteration, the PFA demand estimated by the PFA prediction models is used as a conservative input for the design of acceleration-sensitive non-structural elements. An equation to predict λ꜀ at the design stage is proposed for collapse risk-targeted seismic design of buildings. This equation comprises three principal components: reserve building strength, a proxy for effective structural stiffness, and reserve building deformation capacity. This equation is calibrated for the collapse risk-targeted design of BRBF buildings in New Zealand using results from 26 case-study BRBF buildings. The validity of this equation is demonstrated with three design verification examples designed to specific λ꜀ targets. Considering λ꜀ from hazard-consistent incremental dynamic analysis as the benchmark, the mean absolute percentage error in the design-stage prediction of λ꜀ of the verification buildings is approximately 10%.

View the original item