The Hope Fault at Hossack Station east of Hanmer Basin, North Canterbury
Oblique convergence of the Pacific and Australian Plates is accommodated in the northern South Island by the Marlborough Fault System. The Hope Fault is the southern of four major dextral strike-slip faults of this system. Hanmer Basin is a probable segment boundary between the Hope River and Conway segments of the Hope Fault. The Conway segment is transpressional and shows increasing structural complexity near the segment boundary at Hanmer Basin, with multiple Late Quaternary traces, and fault-parallel folding in response to across-fault shortening. Between Hossack Station and Hanmer Basin a crush zone in excess of one kilometre wide is exposed in incised streams and rivers. The crush zone has an asymmetrical geometry about the active trace of the Hope Fault, being only 100-300 metres wide south of the fault, and more than 500 metres wide north of the fault. The most intense deformation of Torlesse bedrock occurs at the south side of the fault zone, indicating that strain is accommodated against the fault footwall. North of the fault deformation is less intense, but occurs over a wider area. The wide fault zone at Hossack Station may reflect divergence of the Hanmer Fault, a major splay of the Hope Fault. At Hossack Station, the Hope Fault has accommodated at least 260 metres of dextral displacement during the Holocene. Dating of abandoned stream channels, offset by the Hope Fault, indicated a Late Holocene dextral slip-rate of 18±8 mm-¹ for the west end of the Conway segment. Using empirical formulae and inferred fault parameters, the expected magnitude of an earthquake generated by the Conway segment is M6.9 to M7.4; for an exceedence probability of 10%, the magnitude is M7.7 to M7.9. Effects associated with coseismic rupture of the Conway segment include shaking of up to MMIX along the ruptured fault and at Hanmer Basin. Uplift at the east end of Hanmer Basin, in conjunction with subsidence at the southwest margin of the basin, is resulting in the development of onlapping stratigraphy. Seismic reflection profiles support this theory. Possible along-fault migration of the basin is inferred to be a consequence of non-parallelism of the master faults.